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A B S T R A C T   

A frequent and accurate quality inspection procedure to assess the quality requirements during the life cycle of 
buildings is crucial. Among different quality measures, the dimensional quality that involves spatial features of 
buildings is of significant importance. However, the traditional manual inspection of dimensional quality in 
buildings is unreliable and tedious. Thus, this study presents an end-to-end method for quality inspection of 
building structural members using point cloud datasets. The proposed method, first, detects and labels structural 
members within the point cloud based on a set of domain-specific geometric and semantic definitions. Then, each 
structural member’s section width, height, and length are obtained with the proposed bounding box method. 
Experiments on three real-world buildings’ point clouds with various geometric features and noise levels, oc
clusion, and outliers were also conducted, illustrating the performance efficiency and accuracy of the proposed 
model for dimensional quality inspection of building structural members.   

1. Introduction 

Satisfying quality requirements during the project life cycle is one of 
the most critical indicators of a successful construction and infrastruc
ture project [1]. Poor quality is reflected as defects and failures in 
constructed facilities, leading to increased direct and indirect costs if not 
dealt with promptly. A recent report on the quality of buildings in 
Australia’s multi-residential sector showed that 97% of buildings in New 
South Wales, 74% in Victoria, and 71% in Queensland had at least one 
type of defect [2]. Also, more than 13.6% of bridges were found to be 
functionally defective in a recent infrastructure report by the American 
Society of Civil Engineering (ASCE) [3]. These construction projects may 
be considered safe; however, they need immediate attention to prevent 
hazardous situations in the future [4–6]. Therefore, a frequent and ac
curate quality control procedure to assess the as-built conditions of 
construction projects, especially buildings, is needed. To achieve this 
goal, a Quality Inspection and Management (QIM) plan is required in 
buildings during different life cycle phases. A QIM plan oversees various 
quality criteria, in which “dimensional quality” that involves spatial 

features of buildings’ elements (i.e., position, dimensions, shape) is of 
significant importance due to the high probability of system failures that 
is associated with the lack of proper assessment of such features [7]. 

Two primary aspects of QIM plans are information acquisition and 
information communication [8]. Currently, dimensional information for 
a QIM plan is primarily acquired using visual inspection and manual 
measurements of targeted building elements, such as the position and 
dimensions of structural members in a building. While simple, manual 
acquiring of dimensional information is costly, tedious, and unreliable 
[9]. For obtaining information from buildings, non-contact sensing 
technologies, such as 2D photogrammetry and laser scanners, have 
shown promising performance in the literature [10,11]. 2D cameras 
have provided a relatively inexpensive solution with high precision for 
acquiring information from buildings [12,13]; however, they are sus
ceptible to buildings’ environmental conditions, such as different vari
eties of noises and illuminations. Most importantly, they cannot provide 
accurate depth information, which is crucial for dimensional quality 
inspection purposes. In such instances, laser scanners have proven to be 
a good alternative and supplement [14]. Laser scanners capture the 
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external surfaces or an overall 3D geometry of an object in a point cloud 
format. A point cloud is a collection of points in a 3D coordinate system 
with geometric or geodetic coordinates [15]. While being a useful asset 
for acquiring information for QIM plans, communication of raw point 
clouds with different stakeholders of buildings for quality inspection 
purposes is challenging due to the lack of semantic information in point 
clouds [16]. Thus, the theoretical benefits of point clouds for developing 
QIM plans of buildings [17–19] can only be achieved after the pro
cessing of point clouds. This calls for methods capable of processing 
point clouds accurately and efficiently. In practice, however, time, 
precision, and computing resources required for manual point cloud 
processing prevent construction projects from realizing such benefits 
[20–22]. Thus, various point cloud processing methods have been 
developed for inspecting different aspects of dimensional quality in 
buildings, such as dimensions of building façades [23], dimensions of 
building interior environment [24,25], and deflection/deformation of 
structures [26,27]. However, the methods proposed by the previous 
research are unsuitable for an end-to-end dimensional quality inspection 
of structural members in different building types and life cycle stages 
[7,28]. 

Thus, this study aims to overcome the limitations of the traditional 
manual methods and fill in the research gap by proposing an end-to-end 
point cloud processing method to use point cloud data of buildings, from 
which the dimensional quality of building structural members (beams, 
columns, and bracings) is automatically inspected. The proposed 
method takes the raw point cloud of building structural members as 
inputs and outputs each structural member’s cross-section width and 
height along with member length for dimensional quality inspection. 
The contributions of this paper are threefold: (1) a comprehensive end- 
to-end method that utilizes both geometric and shape definitions of 
structural members for more robust object detection in point clouds with 
various levels of obstacles, outliers, missing information, and noises, (2) 
a method for automatically generating and adopting synthetic training 
dataset for semantic segmentation using PointNet is presented, and (3) 
the approach is supported by contextual knowledge of civil and struc
tural engineering to be generalizable to other buildings and construction 
projects in different life cycle stages with various geometric features. 
The extracted information can also be directly transformed into the 
digital twin of construction models. The rest of this paper is organized as 
follows. Section 2 introduces the research background on point cloud 
segmentation methods and discusses different aspects of dimensional 
quality inspection with point clouds. The details of the proposed end-to- 
end method are described in Section 3. Section 4 introduces the vali
dation experiments performed to assess the proposed method’s perfor
mance. The discussion on the results obtained from applying the 
proposed method is presented in Section 5, and Section 6 concludes this 
article. 

2. Background 

Over the past decade, much work has been conducted to inspect the 
quality of construction projects with non-contact sensing devices. 
Noteworthy examples are radio-frequency identification (RFID) [8], 2D 
cameras [29–31], 3D cameras [32], and laser scanners [33–35]. 
Considering the capabilities and accuracy of 3D scanned data [36], this 
work focuses on inspecting the dimensional quality of structural mem
bers with 3D point cloud data obtained from laser scanners. To achieve 
this target, first, structural members should be detected and labeled 
within the point cloud based on a set of domain-specific geometric and 
semantic definitions. Then, the dimensions will be obtained based on the 
specifications of each structural member. An overview and a report on 
previous literature on the abovementioned steps are presented in this 
section. 

2.1. Geometric segmentation 

To date, numerous point cloud processing methods have been 
developed to utilize the unique spatial and geometric definitions and 
relationships between structural members. Using geometric definitions 
and relationships, it would be possible to detect possible structural 
members in point clouds of buildings [37]. This process is usually 
initialized by a segmentation algorithm to cluster similar points 
together. In the next step, clusters of similar points would be labeled by 
adopting contextual hard-coded knowledge. For instance, considering 
columns, the potential points belonging to columns must have a normal 
vector perpendicular to the Z-axis. The most common point cloud seg
mentation algorithms used in the previous literature are shape-fitting 
and clustering [38]. 

Shape-fitting algorithms have been developed to group points into 
clusters that fit geometric models such as planes [39]. One of the most 
used shape-fitting algorithms is the RANdom SAmple Consensus 
(RANSAC). The RANSAC algorithm is an optimization method that 
generates candidate solutions for a predefined mathematical model 
[40]. This method is iterative, which begins with the recognition of 
random sampling of a minimal number of points to estimate the pa
rameters of shapes, such as planes or cylinders [41]. The next step 
consists of labeling the points so that a set of points at a certain distance 
from the model is appointed inliers while the rest are outliers. After 
these iterative rankings and labeling, the best result or consensus will be 
chosen [42]. Given its computationally expensive nature, applications of 
the RANSAC method are limited to fitting simple shapes such as planes 
and spheres. Therefore, RANSAC is mostly suitable for applications such 
as façade modeling [43] and building roof segmentation [44], in which 
point clouds consist of simple shapes and a low level of noise. 

Another group of algorithms for the geometric segmentation of point 
clouds are clustering methods. Clustering methods are based on identi
fying patterns within different point cloud features to automatically 
generate subgroups of similar types, also known as clusters [45]. Some 
of the most common point cloud features used for clustering are spatial 
position and Euclidian distance between points [46], the normal vector 
of points [47], and point density of point clouds [48]. Also, based on the 
application in hand, handcrafted features can be utilized for point cloud 
clustering. Next, a heuristic approach combining domain-specific rules 
is required to break down the point cloud into regions of interest and 
assign a label to each cluster [49,50]. Clustering methods were utilized 
for building indoor reconstruction by segmenting structured point 
clouds using the distance between room faces as a feature [51]. Also, a 
multiscale feature detection method accounting for surface roughness 
and curvature was developed for the segmentation of building point 
cloud models to detect architectural/structural features and Mechanical, 
Electrical, and Plumbing (MEP) systems [52]. While applicable for small 
and noiseless datasets, the performance of clustering techniques with 
multiscale features is susceptible to the presence of noise and outliers in 
the point cloud. Also, discontinuities in the point cloud, such as sharp 
features, heavily impact the performance of multiscale feature clustering 
techniques [53]. As a result, relying solely on geometric definitions and 
contextual relationships does not result in robust information for 
detecting structural members. 

2.2. Semantic segmentation 

In addition to geometric specifications, structural members, such as 
columns, are also defined by section shapes. Therefore, assigning a 
section shape label to point clusters, also known as semantic segmen
tation, along with considering their contextual relationships would lead 
to a robust model for detecting structural members in real-world point 
clouds. To reach such a purpose, machine learning methods, such as 
Convolutional Neural Networks (CNN), have performed well in a variety 
of applications [54–56], such as autonomous vehicles [57] and text 
classification [58]. However, point clouds are irregular, unstructured, 
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and unordered data that prevent the convolution operations of CNN 
methods from being established [59]. Moreover, a high rate of noise and 
occlusion in real-world point clouds affects the performance of CNNs for 
semantic segmentation of point clouds. Thus, many methods have been 
developed to apply 3D deep learning to point clouds for semantic seg
mentation purposes, which are divided into two main groups: 1. Con
verting point clouds into a structured grid [60,61], and 2. Applying deep 
learning to unstructured point clouds [62]. 

The main semantic segmentation methods that convert point clouds 
into a structured grid are multiview-based methods and voxel-based 
methods [63]. Voxel-based methods transform the point clouds into 
predefined fixed-size binary voxels [61]. Then, a deep learning network 
is applied to the point cloud for assigning class labels to each point in the 
dataset [64]. Voxel-based methods were adopted for point cloud se
mantic segmentation in applications such as indoor scene interpretation 
[65,66] and building detection from an urban scene [67,68]. However, 
voxel-based methods have a high memory requirement, limiting the 
number of voxelization cubes. Thus, voxel-based methods lack the 
desirable performance for semantic segmentation of building structural 
members. 

On the other hand, multiview-based approaches transform point 
clouds into a set of 2D images to generate structured datasets [69]. The 
main advantages of multiview-based approaches over voxel-based 
methods are; 1. Avoiding quantization of voxelization, and 2. Adopt
ing well-researched and optimized 2D CNN methods. However, trans
forming point clouds into structured grids, in general, is memory- 
intensive and leads to the loss of much information [59], which makes 
adopting point clouds for detecting structural members of buildings a 
challenging task. 

To overcome issues related to converting point clouds into structured 
grids, many techniques have been developed, starting with PointNet 
[70], to apply deep learning to an unstructured point cloud. PointNet is a 
local feature learner that encodes spatial features of each point in a point 
cloud dataset to generate a global point signature by aggregating indi
vidual point features. While achieving state-of-the-art performance on 
various benchmark point cloud datasets, PointNet’s performance de
clines in real-world datasets due to missing the local dependency among 
points [71]. To compensate for this issue, many deep learning ap
proaches were developed to not only deal with the inherent unstruc
turedness of point clouds but also hierarchically capture the local 
structure of point clouds. The aforementioned approaches are catego
rized into three main classes of non-exploring local correlation ap
proaches, such as PointNet++ [62], approaches that explore local 
correlation, such as PointCNN [72], and graph-based approaches, such 
as Dynamic Graph CNN (DGCNN) [73]. These methods have addressed 
the challenges of real-world datasets for the semantic segmentation of 
point clouds [74]. A comparison among deep learning-based methods 
for semantic segmentation of point clouds of building interiors showed 
that PointNet had outperformed other local feature learners in predict
ing long objects such as columns [75]. Thus, considering local de
pendency among points being addressed by geometric segmentation of 
point cloud, PointNet is a suitable local feature learner for semantic 
segmentation of point clouds to identify the section shape of structural 
members. 

Recent studies have detected structural members [76] and MEP 
systems [74] using machine learning-based methods. While achieving 
high detection accuracy, these research efforts required large numbers 
of pre-annotated real-world training datasets similar to their investi
gated case studies, which opposes a challenge for using such methods for 
other construction projects. To overcome such challenges, further 
research efforts utilized slicing methods and image processing ap
proaches for detecting section shapes within point cloud datasets 
[77,78]. These research efforts achieved a high detection accuracy due 
to using matured image processing techniques and methods. However, 
the performance of such approaches is heavily impacted by the existence 
of large numbers of non-related objects in point clouds. Also, projecting 

2D images to 3D space impacts the overall performance of such 
approaches. 

2.3. Dimensional quality inspection 

Dimensional quality inspection is the process of collecting spatial 
information such as size, position, and shape from targeted objects and 
comparing it with as-design models [79]. The current practice for 
dimensional quality inspection of building structural members is pri
marily based on manual visual inspection and measurements with 
simple tools such as tape [7,80]. While simple, the manual inspection of 
structural framing members is error-prone, tedious, and potentially 
hazardous [79]. As a result, laser scanners have recently gained a 
plethora of attention to be adopted for quality inspection of structural 
members by generating project as-built models in the form of point 
clouds [81]. Point clouds obtained from laser scanners were used in 
different aspects of dimensional quality inspection, such as automati
cally detecting corners and edges of precast concrete members in an off- 
site manufacturing factory [34,82]. Also, the positioning of rebars in 
reinforced precast concrete members with point clouds was investigated 
[83]. Moreover, point clouds were utilized to detect pipe spool mem
bers’ position and orientation to identify local discrepancies and de
viations from as-built models [84]. Additionally, a dimensional 
compliance check approach was developed by detecting 3D CAD objects 
from point clouds [85]. In this research, two dimensional quality in
spection aspects, i.e., section dimensions and length of building struc
tural members, are investigated. 

Considering the body of research studied above, the current scope of 
study into dimensional quality inspection with point clouds is mainly 
limited to specific small-sized objects, such as precast concrete elements 
in a controlled environment, and only utilizes either geometric or se
mantic segmentation methods for detecting structural members. Also, 
the proposed methods are restricted to buildings with specific geometric 
and shape features. As a result, a general end-to-end dimensional quality 
method for structural members that inputs raw point clouds and auto
matically outputs the dimensions of structural members is sparse in the 
literature [7]. Hence, this study aims to develop an end-to-end dimen
sional quality inspection approach for building structural members in 
real-world situations that: (1) detects structural building members 
(columns, beams, and bracings) by applying a set of domain-specific 
geometric and semantic definitions, and (2) obtains the dimensions of 
structural framing members for a compliance check with ground truth 
dimensions. 

3. Methods 

The end-to-end dimensional quality inspection methodology devel
oped in this study aims to automatically extract structural members of 
buildings at different life cycle stages using point clouds and quantify 
their dimensional quality. The main components of a building’s struc
tural system are beams and columns designed for taking vertical loads 
and bracings for resisting lateral loads. While each building, as a con
struction project, is unique in terms of architectural and structural de
signs, building structural members have common attributes and 
characteristics. Such common attributes form the contextual knowledge 
basis for detecting building structural members as below. 

Attribute 1: beams are often distributed horizontally in rectangular 
grids that carry loads perpendicular to their longitudinal direction 
and transfer them to columns. 
Attribute 2: columns are vertical members designed to take loads 
from beams and transfer them to the building foundation. Thus, 
columns are often distributed beneath beams. Also, the width of 
columns is usually designed to be equal to or more significant than 
the width of beams connected for adhering to the “strong column- 
weak beam” concept. 
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Attribute 3: bracings are diagonal members distributed beneath 
beams with an inclined angle between 30 and 60 degrees. 
Attribute 4: the cross-section shape of building structural members 
are often channel shapes, universal beams, rectangular shapes, or 
circular shapes. 

The common attributes of building structural members are divided 
into geometric information consisting of geometric definitions and 
spatial relationships, semantic information consisting of cross-section 
shape information, and dimension acquisition consisting of structural 
design contextual knowledge for each member. Therefore, the end-to- 
end dimensional quality inspection of building structural members 
using point clouds is summarized into four major steps: 1. Preprocessing, 
2. Geometric segmentation, 3. Semantic segmentation, and 4. Obtain
ment of structural members dimensions. The proposed method work
flow is visually illustrated in Fig. 1. 

3.1. Point cloud preprocessing 

The first preprocessing step is floors, ceiling slabs, and wall filtration 
from point clouds. A substantial number of acquired points by a scanner 
belong to the floor, ceiling slab, and wall, with no beneficial information 
for this study. Those redundant points cause a computational burden 

during further point cloud processing steps. An improved RANSAC al
gorithm based on Normal Distribution Transformation (NDT) cells [86] 
is implemented to detect planes within the point cloud. This method 
represents the point cloud with a set of NDT cells. The geometric features 
of NDT cells are then utilized to classify the NDT cells into planar and 
non-planar cells. Next, planes will be classified into horizontal and non- 
horizontal planes that can be utilized for removing walls and floors. 
Also, another method proposed in the literature for detecting floor, 
ceiling, and wall points consists of three main steps of decomposing 
point clouds into 2D cells in the xy planes using a quadtree represen
tation, local surface extraction of floor and ceiling slab, and cell-based 
region growing segmentation (CRG) for filtering out final points of 
floor, ceiling slab, and walls [28]. 

The next preprocessing step is aligning building structural members 
with the point cloud coordinate system. The columns are correctly 
adjusted to the Z-axis during the scanning procedure with Terrestrial 
Laser Scanners (TLS) and require no further adjustments. However, the 
beam system in point clouds has an arbitrary orientation in geo-space 
and should be rotated to align with the X and Y axes. This trans
formation is achieved by multiplying the input point cloud (P = {pi =

(xi, yi, zi)} ∈ R3) with a rotation matrix, as shown in Eq.1, about the Z- 
axis, 

Fig. 1. The workflow for an end-to-end dimensional quality inspection of structural members with point clouds.  
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Protated,i =

⎡

⎣
cos(θ) − sinθ 0
sinθ cos(θ) 0

0 0 1

⎤

⎦.

⎡

⎣
xi
yi
zi

⎤

⎦ (1)  

where θ is the rotation angle. Since the segmentation proposed in this 
study is generally robust against slightly skewed elements, this angle is 
calculated automatically by adopting Principal Component Analysis 
(PCA) method. Geometrically speaking, PCA projects the data in the 
direction that explain a maximal amount of variance. This principal 
component direction, which has an angle of θ to the global axis, is 
aligned with the largest dimension of buildings in xy plane. Thus, using 
Eq.1, the building will be aligned with the global x and y axes. The 
preprocessing steps are shown in Fig. 2, in which xyz is the global co
ordinate system, and xʹ yʹ zʹ is the local coordinate system along building 
structural members. 

3.2. Geometric segmentation 

The first step for detecting building structural members in a point 
cloud is to identify points possessing common geometric attributes of 
structural members. To achieve this, the contextual knowledge of 
common geometric attributes, i.e., geometric definitions and spatial 
relationships, of structural members is deployed for each type of 
building structural members in the following sections. 

3.2.1. Beams 
In buildings, beams are often horizontal members that carry vertical 

loads perpendicular to their longitudinal direction. Therefore, beams are 
geometrically defined as vertical members distributed in a slice parallel 
to the xy plane. To utilize the geometric definition of beams, first, the 
point cloud (P = {pi = (xi, yi, zi)} ∈ R3) of a building is divided into 
horizontal slices. To find the number of horizontal slices Nhor_slice, the 
maximum Z-axis coordinate Zmax and the minimum Z-axis coordinate 
Zmin is retrieved from the point cloud. Then Nhor_slice is determined based 
on Eq. (2). 

Nhor slice =
Zmax− Zmin

thor slice
(2)  

where thor_slice is the thickness of horizontal slices. In the next step, each 
point pi in the point cloud is assigned to a horizontal slice Shor_slice,j if zi ∈

pi (xi, yi, zi) satisfies the condition in Eq. (3). 

pi ∈ Shor slice,jif : {Zmin +(thor slice*(j − 1) ) ≤ zi ≤ Zmin +(thor slice*j) (3)  

where j goes from 1 to Nhor_slice. After distributing points in horizontal 
slices, it is hypothesized that the number of points in slices containing 
potential beam points ppot_beam,i (xi, yi, zi, GLbeam) is higher than in other 
slices. To implement this hypothesis, the number of points in each 
horizontal slice Np hor slice is retrieved and stored in a list as Lhor_slice =

[Np hor slice,1, Np hor slice,2, …, Np hor slice,Nhor slice ]. Then, the standard devi
ation σLhor slice and mean values μLhor slice 

of the members in Lhor_slice are 
calculated. Then, points in a slice are labeled as potential beam points 
ppot_beam,i (xi, yi, zi, GLbeam) if Np hor slice of that horizontal slice satisfies 
the condition in Eq. (4). 

pi ∈ Shor slice,j→ppot beam,iif : {
Nphorslice ,i

− μLhorslice

σLhorslice

> threshold (4)  

where j goes from 1 to Nhor_slice, and the threshold value is set based on the 
statistical distribution of data and level of outliers in the point cloud 
dataset. Next, each horizontal slice containing potential beam points is 
extracted from the building point cloud. Based on the thickness of hor
izontal slices, there might be more than one horizontal slice containing 
potential beam points of each building floor. Therefore, to merge the 
potential beam point clouds of each floor, a Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN)[87] is adopted to 
cluster potential beam points based on zi ∈ ppot_beam,i (xi, yi, zi, GLbeam). 
DBSCAN operates on the assumption that clusters are dense regions of 
data separated by regions of lower density. DBSCAN is suitable for 
clustering potential beam points based on zi ∈ ppot_beam,i (xi, yi, zi, GLbeam) 
as it is robust to outliers and does not require the number of clusters to 
be specified by the user. Finally, the clustered potential beam points of 
each floor j are saved as a new point cloud (Ppot_beam_floor,j = { ppot_beam,i =

(xi, yi, zi, GLbeam) } ∈ R4). 
In the structural design of buildings, designers often place beams in a 

rectangular grid along the x and y axes due to the practical and struc
tural problems associated with diagonal (zigzag) beams. This spatial 

Fig. 2. Point cloud preprocessing steps: (a) raw point cloud (b) after preprocessing steps.  
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relationship between different beam members in a building is adopted to 
further cluster potential beam points of each floor (Ppot_beam_floor,j = { 
ppot_beam,i = (xi, yi, zi, GLbeam) } ∈ R4) obtained from the previous step into 
individual instances of potential beam points (Ppot_beam = { ppot_beam,i =

(xi, yi, zi, GLbeam) } ∈ R4). To implement this spatial relationship, the 
beams in the x direction must be separated from those in the y direction. 
Thus, a vertical slicing method is adopted to separate beams in the x 
direction from the y direction in potential beam points of each floor. This 
process is only needed to be performed in either the x or y direction. The 
method proposed here considers the vertical slicing for beams in the x 
direction. The number of vertical slices Nver_slice is determined based on 
Eq. (5). 

Nver slice =
Ymax− Ymin

wver slice
(5)  

where Ymax is the maximum Y-axis coordinate, Ymin is the minimum Y- 
axis coordinate in each potential beam point cloud of each floor, and 
wver_slice is the width of vertical slices. In the next step, each potential 
beam point ppot_beam,i is assigned to a vertical slice Sver_slice,j if yi ∈ ppot_beam,i 
(xi, yi, zi) satisfies the condition in Eq. (6). 

Ppot beam,i ∈ Sver slice,jif : {Ymin +(wver slice*(j − 1) ) ≤ yi ≤ Ymin +(wver slice*j)
(6)  

where j goes from 1 to Nver_slice. After distributing potential beam points 
of each floor in vertical slices, it is hypothesized that the number of 
points in vertical slices containing potential beam points in the x di
rection is higher than in other slices. This hypothesis is applied by 
extracting the number of points Np_ver_slice in each vertical slice Sver_slice,j 
and generating a list as Lver_slice = [Np ver slice,1, Np ver slice,2, …, 
Np ver slice,Nver slice ]. Then, the standard deviation σLver slice and mean values 
μLver slice 

of the members in Lver_slice are calculated. Potential beam points in 
a vertical slice are considered to be in the x direction ppot beam x,i if 
Np_ver_slice of that vertical slice satisfies the condition in Eq. (7). 

Ppot beam,i ∈ Sver slice,j→ppot beam x,iif : {
Np ver slice,j − μLver slice

σLver slice

> threshold

(7)  

where j goes from 1 to Nver_slice, and the threshold value is set based on the 
statistical distribution of data and contextual knowledge of building 
structural members, such as the average distance between neighboring 
beams. Next, potential beam members in the x direction are removed 
from potential beam points of each floor and stored as new point clouds, 
and the remaining points are labeled as potential beam members in the y 
direction. At this stage, potential beam members of each floor are 
divided into potential beam members in the x direction ppot_beam_x,i (xi, yi, 
zi, GLbeam) and potential beam members in the y direction ppot_beam_y,i (xi, 
yi, zi, GLbeam). Finally, a DBSCAN clustering is implemented to cluster 
separate instances of potential beam members in both x and y directions 
and save each of them as a new point cloud (Ppot_beam = { ppot_beam,i = (xi, 
yi, zi, GLbeam) } ∈ R4). 

3.2.2. Columns 
In buildings, columns are often geometrically defined as vertical 

members. This geometric definition is utilized by calculating the normal 
vector n→i = (nx, ny, nz) of each point in the point cloud (P = {pi = (xi, yi, 
zi)} ∈ R3). To achieve this purpose, a least square plane is fitted to each 
point in the point cloud, and its k nearest neighbors and the normal 
vector perpendicular to the plane are obtained and assigned to the seed 
point. Then, the obtained normal vector for each point is concatenated 
with its coordinate vector as pnormal,i = (xi, yi, zi, nx, ny, nz,) ∈ R6. To find 
the verticality of each point in the point cloud, the angle θ of the normal 

vector (n
→

i) with Z-axis ( v→) is calculated. Then, each point pi is consid
ered vertical if the condition in Eq. (8) is satisfied. 

pi→pvertical,iif : {

⎛

⎜
⎜
⎝θ = 90◦

− cos− 1

⎛

⎜
⎜
⎝

n→i. v→
⃒
⃒
⃒ n→i

⃒
⃒
⃒.|v|

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

〈

threshold (8)  

where the threshold value is set based on the contextual knowledge of 
building structural members. 

In the building structural engineering concept, columns are designed 
to take loads from beams and transfer them to the building foundation. 
Thus, columns are often distributed beneath beams. To utilize this 
spatial relationship, each vertical point pvertical,i = (xi, yi, zi, nx, ny, nz,) ∈
R6 is labeled as a potential column point if it exists beneath a potential 
beam member as shown in Eq. (9). 

pvertical,i→ppot column,iif :

⎧
⎨

⎩

xMin,j < xi < xMax,j
yMin,j < yi < yMax,j

zi < zMin,j

(9)  

where xMin,j and xMax,j are the minimum and maximum X-axis coordinate 
of jth potential beam point, yMin,j and yMax,j are the minimum and 
maximum Y-axis coordinate of jth potential beam point, zMin,j is the 
minimum Z-axis coordinate of jth potential beam point, and j goes from 1 
to the number of potential beam members identified in section 3.2.1. 
Finally, a DBSCAN clustering is implemented to cluster separate in
stances of potential column members and save each of them as a new 
point cloud (Ppot_column = { ppot_column,i = (xi, yi, zi, GLcolumn) } ∈ R4) and 
remove them from the building point cloud. 

3.2.3. Bracings 
Bracings are often geometrically defined in buildings as diagonal 

members with an inclined angle of between 30 and 60 degrees from xy 
plane. To implement this geometric definition, the normal vector n→i =

(nx, ny, nz) of each point in the point cloud (P = {pi = (xi, yi, zi)} ∈ R3) is 
calculated using the method described in section 3.2.2. Then, the angle θ 
of each point in the point cloud is obtained by calculating the angle θ of 

the normal vector (n
→

i) with Z-axis ( v→). Next, the condition stated in Eq. 
(10) is checked for each point pi to obtain the points satisfying the 
geometric definition of bracings. 

pi→pgeometric bracing,iif : {30◦

<

⎛

⎜
⎜
⎝θ = cos− 1

⎛

⎜
⎜
⎝

n→i. v→
⃒
⃒
⃒ n→i

⃒
⃒
⃒.|v|

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

〈

60◦ (10) 

In the building structural engineering concept, bracings are distrib
uted beneath beams to provide lateral load resistance for buildings. To 
utilize this spatial relationship, each pgeometric_bracing,i = (xi, yi, zi) ∈ R3 is 
labeled as a potential bracing point if it exists beneath a potential beam 
member, as shown in Eq. (11). 

pgeometric bracing,i→ppot bracing,iif :

⎧
⎨

⎩

xMin,j < xi < xMax,j
yMin,j < yi < yMax,j

zi < zMin,j

(11)  

where xMin,j and xMax,j are the minimum and maximum X-axis coordinate 
of jth potential beam point, yMin,j and yMax,j are the minimum and 
maximum Y-axis coordinate of jth potential beam point, zMin,j is the 
minimum Z-axis coordinate of jth potential beam point, and j goes from 1 
to the number of potential beam members identified in Section 3.2.1. 
Finally, a DBSCAN clustering is implemented to cluster separate in
stances of potential bracing members and save each of them as a new 
point cloud (Ppot_bracing= { ppot_bracing,i = (xi, yi, zi, GLbracing) } ∈ R4) and 
remove them from the building point cloud. The geometric segmenta
tion process for each type of building structural member is shown in 
Fig. 3. 
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3.3. Semantic segmentation 

The geometric segmentation performed in the previous section 
identifies and labels the points based on the geometric definitions of 
structural members. Due to buildings’ dynamic and complicated envi
ronment, many non-structural members with geometric attributes 
similar to structural members can be mistakenly detected as structural 
members. A common attribute regarding building structural members’ 
cross-section shape is utilized to avoid this mistake. The cross-section 
shape of building structural members are often channel shapes, uni
versal beams, rectangular shapes, or circular shapes. Therefore, a se
mantic segmentation step is developed to classify the section shape of 
objects found in the geometric segmentation step. 

Semantic segmentation is the semantic classification of point clouds 
into clusters of points with similar cross-section shape label properties. 
For this purpose, a local feature learner, PointNet, for the classification 
step of the semantic segmentation network is utilized. The network 
applies a symmetric function to point clouds to make them irrespective 
of the input order of points to deploy deep learning algorithms without 
converting point clouds into a structured grid. Also, multilayer percep
trons are used to transform the feature dimensions of the points in the 
point cloud to a higher dimensional space. Moreover, the max-pooling 
function is deployed as a symmetric function to generate a global 
high-dimensional feature vector from the dataset used for part seg
mentation and classification purposes. PointNet, as a deep learning 
method, must be trained with a training dataset before being applied for 
the section-shape classification of geometrically labeled structural 

members detected in Section 3.2. The following sections discuss the 
proposed method for generating a training dataset from synthetic data 
and applying PointNet for section-shape classification. 

3.3.1. Training dataset generation 
One of the challenges of applying semantic segmentation networks to 

the point clouds of buildings for detecting structural members is the lack 
of publicly available labeled training datasets. Also, generating a 
training dataset from real-world structural member point clouds in
creases the possibility of having inadequate, nonrepresentative, and 
poor-quality training datasets. Therefore, this research developed a 
framework to adopt synthetic training datasets. This framework consists 
of six steps as below: 

Step 1: obtaining 3D mesh models of structural sections (.off file 
formats) from the available libraries online (e.g., Sketchup Warehouse). 

Step 2: converting the obtained.off 3D mesh models to point clouds (. 
pts). Meshes are represented by vertices, points in 3D space, and trian
gular faces created by three vertex indices. Then, a predefined number of 
points are sampled on triangular faces. To achieve a uniform point 
sampling, the number of points sampled on each triangular face is 
proportionate to its area. 

Step 3: normalizing the coordinates of obtained point clouds. 
Step 4: adding random rotation based on three different axes so the 

network can detect sections with various orientations. For each point pi 
(xi, yi, zi) the rotation matrices are calculated as shown in Eq. (12). 

Fig. 3. Geometric segmentation of possible structural members: (a) original point cloud, (b) slicing for identifying potential beam points, (c) detecting potential 
column points, (d) segmenting potential bracing points, and (e) geometrically segmented point cloud. 
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⎡

⎣
xz
yz
zz

⎤

⎦ =
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⎣
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤
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=
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0 1 0
− sin(γ) 0 cos(γ)

⎤

⎦.

⎡

⎣
xx
yx
zx

⎤

⎦ (12)  

where (xz, yz, zz) is the coordinates of point pi (xi, yi, zi) after rotation 
around Z-axis using a transformation matrix with a random angle of θ, 
(xx, yx, zx) is the coordinates of point pz (xz, yz, zz) after rotation around 
X-axis using a transformation matrix with a random angle of ∅, and (xf, 
yf, zf) is the coordinates of point px (xx, yx, zx) after rotation around Y- 
axis using a transformation matrix with a random angle of γ, which is 
reported as the final coordinate of each point. 

Step 5: adding random noise to point clouds to provide a similar 
noise situation to real-world datasets using a Normal (Gaussian) 
distribution. 

Step 6: adding occlusions to random point clouds in random di
rections to familiarize the network with possible occlusions in building 
point clouds. The occlusion in point clouds is defined as missing a 
portion of points in a specific location. To utilize this definition, points in 
each point cloud are sorted based on a random coordinate direction. 
Then, a random number of points are removed from the point cloud. 

Fig. 4 illustrates the framework developed in this research for 
generating a synthetic training dataset. 

3.3.2. PointNet implementation 
After training the network with synthetic datasets, it can be applied 

to the potential structural members detected in the geometric segmen
tation step. The classification network is trained to classify the cross- 
section shape perpendicular to the length of potential structural mem
bers. However, building structural members are often described as 
lengthy objects, in which the length of members is more significant than 
the dimensions of the cross-section shape. Therefore, potential building 
structural members must be sliced along their length to minimize the 

impact of member length in classifying the cross-section shape, as shown 
in Fig. 5a. While it is possible to manually design synthetic training 
samples with longer structural members, the time and manual labor 
required for this task contradict the aims of this paper as a fully auto
mated method. Therefore, a slicing process breaks down the potential 
structural members point clouds (Ppot_beam OR Ppot_column OR Ppot_bracing 
= {pi = (xi, yi, zi, GL)} ∈ R4) along their longitudinal direction into 
smaller point clouds (Ppot_sliced,j = {pi = (xi, yi, zi, GL)} ∈ R4) so that the 
section shapes become the members’ predominant feature. The slicing 
method initializes by picking the closest point to the corner of the point 
cloud model. Then, a K-Nearest Neighbor algorithm is adopted to group 
the k nearest points to the seed point based on Euclidian distance. Next, 
a bounding box is created around the selected points. Finally, any point 
in the potential structural members’ point clouds will be extracted and 
saved as a new point cloud (Ppot_sliced,j = {pi = (xi, yi, zi)} ∈ R3) if the 
conditions of Eq. (13) are met. 

pi ∈ (Ppot beam)OR(Ppot column)OR(Ppot bracing)→pi ∈ Psliced,jif

:

⎧
⎨

⎩

xMin,j < xi < xMax,j
yMin,j < yi < yMax,j
zMin,j < zi < zMax,j

(13)  

where xMin,j and xMax,j are the minimum and maximum X-axis coordinate 
of jth bounding box, yMin,j and yMax,j are the minimum and maximum Y- 
axis coordinate of jth bounding box, zMin,j and zMax,j are the minimum 
and maximum Z-axis coordinate of jth bounding box, and j goes from 1 to 
the number of bounding boxes created in this step. 

Then, the network will be applied to the extracted point clouds for 
section shape inference, as shown in Fig. 5b. The output of the classifi
cation procedure on each point cloud slice is a probability distribution 
vector containing the probability values for different classification class 
categories. The confidence score of the classification network is obtained 
by calculating the Probability Vector Length (PVL) of each classified 
point cloud slice using Eq. (14). 

PVL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n(σPVL)
2
+

1
n

√

(14)  

where n is the size of the probability vector population and σPVL is the 

Fig. 4. Framework for generating synthetic training dataset: (a) 3D model of structural section shapes, (b) structural section shapes point cloud converted from 3D 
models, (c) normalized structural section shapes point clouds, (d) random rotation of the structural section shapes, (e) structural section shapes with random noise, 
and (d) structural section shapes with random occlusion. 
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standard deviation of the probability vector population. The maximum 
value of PVL always equals one, meaning that the probability of one of 
the population members is one, and the rest is zero. In this case, the 
classification network has the highest prediction confidence. The mini
mum value of PVL equals to 1̅ ̅

n
√ meaning that all probability population 

members have the same probability, which is the lowest classification 
network confidence. Therefore, the threshold for the acceptable confi
dence of the classification network is defined using Eq. (15). 

MaxPVL = 1, MinPVL =
1̅
̅̅
n

√ , Confidencethreshold =
MaxPVL + MinPVL

2
(15) 

Point cloud slices with higher classification confidence than the 
confidence threshold will be semantically labeled. However, point cloud 
slices with lower classification confidence than the confidence threshold 
will be labeled as “not identified” to be further manually investigated by 
the user to decide whether these points are part of structural members or 
they are a part of non-structural members possessing geometric attri
butes of structural members. 

3.4. Dimension acquisition 

To obtain the dimensions of each detected structural member point 
cloud (Pstructural_member,j = {pi = (xi, yi, zi, FL)} ∈ R4), first, the point 
cloud is rotated using the PCA algorithm and Eq. (1) to align with the 
global coordinate system xyz. Then, the main dimensions of each 
detected structural member point cloud are obtained by circumscribing 
a bounding box around it. The dimensions of the circumscribed 
bounding box for each detected structural member point cloud are 
calculated using Eq. (16). 

Boundingboxj :

⎧
⎨

⎩

dim1,j = xMax,j − xMin,j
dim2,j = yMax,j − yMin,j
dim3,j = zMax,j − zMin,j

(16)  

where xMin,j and xMax,j are the minimum and maximum X-axis coordinate 
of jth detected structural member point cloud, yMin,j and yMax,j are the 
minimum and maximum Y-axis coordinate of jth detected structural 
member point cloud, zMin,j and zMax,j are the minimum and maximum Z- 

axis coordinate of jth detected structural member point cloud, and j goes 
from 1 to the number of detected structural member point clouds. 

The dimensions are labeled based on the obtained structural label 
and contextual knowledge of designing structural members in buildings. 
In the building structural design concept, beams are often intended to 
have a height more significant than the width to provide better bending 
moment resistance. Also, columns under axial loading are usually 
designed with square cross-section dimensions to provide better struc
tural support and practical buildability. Thus, the structural members’ 
length, height, and width are obtained using Eq. (17); an example is 
depicted in Fig. 6.   

4. Experiments and results 

The experiments and results section includes data collection, method 
implementation, and performance evaluation. The data collection stage 

Fig. 5. (a) Geometrically segmented point cloud without semantic section shape labels, and (b) sliced possible structural members with semantic section 
shape labels. 

Fig. 6. Example of a bounding box for beam.  

Pstructural member,j = {pi = (xi, yi , zi, FL)}c ∈ R4 :

⎧
⎨

⎩

ifFL = beam : {Length = Max
(
dim1,j, dim2,j

)
,Width = Min

(
dim1,j, dim2,j

)
,Height = (dim3,j)}

ifFL = column : {Length = (dim3,j),Width = Min
(
dim1,j, dim2,j

)
,Height = Max

(
dim1,j, dim2,j

)
}

ifFL = bracing : {Length = Max
(
dim1,j, dim2,j

)
,Width = Min

(
dim1,j, dim2,j

)
,Height = (dim3,j)}

(17)   
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presents the scanning procedure of three real-world building point 
clouds. Then, the implementation details of the method on the real- 
world point cloud datasets are discussed in the method implementa
tion stage. Finally, the performance evaluation stage discusses the pre
cision metrics of the proposed method. 

4.1. Data collection 

To validate the performance of the proposed end-to-end structural 
members dimensional quality inspection, validation experiments were 
performed on three real-world building point clouds with varying levels 

Fig. 7. (a,b) Monash University N1 carpark building point cloud, (c,d) Monash Smart Manufacturing Hub laboratory building point cloud, (e,f) point cloud of the 
educational building in Monash University. 

Fig. 8. Registration of the carpark building (a) one scan, (b) full model, and (c) subsampled point cloud.  
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of noises, outliers, and geometric features in different life cycle stages of 
buildings, as shown in Fig. 7. 

For the first real-world building point cloud, multiple scans were 
taken by a terrestrial laser scanner (FARO® Focus M70) from the inte
rior of the Monash University N1 carpark building. The scanner was 
positioned in the middle of each four columns for the maximum 
coverage of structural members from each side. After obtaining 18 scans 
of the building with ¼ resolution and 4X quality settings, an automatic 
registration process was performed by using FARO SCENE Software 
(Autodesk Recap and Leica Cyclone software can also be used) to stitch 
the scans together, as shown in Fig. 8. Based on the settings mentioned 
above, the registration step for the whole building took 8–10 h using a 
desktop computer (Intel i7-9700 CPU @ 3.00 GHz, 32 GB RAM, and 500 
GB), resulting in a point cloud with 3.6 x108 points (hereinafter referred 
to as the carpark building). The carpark case study building represents 
the applicability of the proposed method for regular building framing 
systems in the operation phase of the building life cycle. Other than 
structural members, the carpark point cloud includes non-structural 
objects such as traffic signs, electrical equipment, etc., a high level of 
occlusion due to scanning blind spots for some structural members, and 
noises caused by moving objects in the building. 

Using the same scanner resolution and quality setting, the second 
real-world building point cloud was obtained from the renovation site of 
a laboratory facility in Monash University (Monash Smart 
Manufacturing Hub) consisting of 3.1 x108 points (hereinafter referred 
to as the laboratory building). The laboratory case study building rep
resents the applicability of the proposed method in the refurbishment 
phase of the building life cycle. This case study includes structural 
members, construction material scattered in the point cloud, plumbing 
objects such as pipes, and electrical systems. The laboratory building 
was chosen to demonstrate the capability of the proposed method in 
detecting and measuring structural members in an unconventional 
structural system, including slopped and non-prismatic beams. 

Finally, the third real-world building point cloud was obtained from 
the construction site of an educational facility at Monash University 
consisting of 2.8 x108 points (hereinafter referred to as the educational 
building). The educational building case study has a high level of noise, 
occlusion, and outliers, and the entire geometry of structural members 
in the boundary of the building was not captured during the scanning 
due to the restrictions associated with construction sites. The educa
tional case study building represents the applicability of the proposed 
method in the construction phase of the building life cycle. The educa
tional building was selected to demonstrate the capability of the pro
posed method in detecting and measuring structural members in point 
clouds with high levels of noise and missing data, along with an un
conventional structural system consisting of diagonal (zigzag) beams. 
The details of each building are shown in Fig. 7 and Table 1. 

4.2. Method implementation 

The proposed end-to-end dimensional quality inspection was run 
using a Tesla K80 GPU. For visualization of results, CloudCompare 
software has been used. For the remainder of this section, specific ex
amples from the carpark building point cloud at each step of the 
developed methodology are included. 

The point cloud was divided into Nhor_slice = 50 horizontal slices using 
a slice thickness thor_slice = 50 mm. Then, the list Lhor_slice containing the 
number of points in each slice was obtained with σLhor slice = 105126 and 

μLhor slice
= 47020. The threshold value for detecting potential beam points 

ppot_beam based on Eq. (4) was defined based on the standard normal 
distribution of 90% probability that a horizontal slice does not contain 
potential beam points considering the height of beams to be 10% of the 
total floor height. Thus, threshold = 1.645 was set to detect potential 
beam points. In the next step, DBSCAN was utilized to merge the po
tential beam points of each floor. DBSCAN requires two main inputs of 
epsilonhor and Nmin_points_hor. While contextual knowledge and point 
cloud specifications are essential in defining epsilonhor values and 
Nmin_points_hor, this research implemented general rules discussed in [88] 
for DBSCAN inputs to avoid subjectiveness. Therefore, epsilonhor = 0.04 
and Nmin_points_hor = 6 were set for DBSCAN to merge the potential beam 
points of each floor in the carpark case study. In the next step, The point 
cloud of potential beam points was divided into Nver_slice = 486 vertical 
slices using a vertical slice width wver_slice = 50 mm to separate beams in 
the x direction from beams in the y direction. For detecting potential 
column points, a search radius of 0.7 m around each point was used for 
point normal estimation with a tolerance of 5% for detecting vertical 
members. The number of considered adjacent points affects the perfor
mance of normal vector estimation, as per discussed in [89]. The 
threshold for labeling points as vertical was set 0.3 degrees, as recom
mended in AS/NZS 5131:2016[90] for the permissible inclination of 
columns. The epsilonver = 0.04 and Nmin_points_ver = 6 were set for 
DBSCAN to separate potential column instances in the carpark case 
study. Finally, potential bracing members were segmented based on the 
conditions of Eq. (10) and Eq. (11). The results of geometric segmen
tation on the carpark building point cloud are shown in Fig. 9. A sum
mary of the input values for the porposed method is shown in Table 2. 

For semantic segmentation steps, four steel section categories of 
channels, universal beams, rectangular hollow sections, and circular 
hollow sections with a total number of 5336 synthetic models for 
training and 1824 synthetic models for validation were used. The ob
tained 3D models of steel sections were automatically converted into 
point clouds with 10,000 points with a random level of noise and oc
clusion as specified in section 3.3.1. The network parameters were 
tuned, and the dropout rate of 0.7 on the last fully connected layer was 
found to be optimum. Adam optimizer with a learning rate of 0.001 was 
used for the network [70]. As such, the network was trained from 
scratch for 150 epochs using a batch size of 32 so that the loss function 
converges during the training process. The training time takes 15 – 18 h 
to converge on average based on the proposed configuration. The 
trained network can detect structural section shapes in all of the 
investigated case study buildings. Also, the trained network can be 
updated to detect structural shapes in any other point clouds by adding 
appropriate training datasets without needing to be trained from 
scratch. The confusion matrix corresponding to the results of the clas
sification network’s performance in the validation dataset is shown in 
Fig. 10. The classification network has an average accuracy of 94% 
across different section shapes. The accuracy of the classification 
network in circular cross-section shapes is lower than the average, and 
the classification network confuses them with rectangular cross-section 
shapes. After the manual observation of the testing and validation 
datasets, it was noted that after adding random noise to the point clouds, 
the cross-section shape of circular shapes changes into a rectangular 
shape, which causes confusion for the classification network. After 
training the classification network, possible structural members detec
ted in the geometric segmentation step were sliced using 10,000 
neighboring points to be similar to the training dataset point cloud point 

Table 1 
Physical specifications and dimensions of case study buildings.  

Building Width (m) Length (m) Ceiling height (m) No. of beams No. of columns No. of bracings Sections 

Carpark building  10.2  24.3  2.5 12 8 2 Universal beam – circular hollow section 
Laboratory building  6.0  35.0  2.5 17 14 0 Universal beam 
Educational building  12.3  23.6  2.5 7 12 0 Universal beam  
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numbers. Next, the probability vector length for the prediction of each 
slice was calculated. Considering four different section shapes used in 
this study, the minimum value for probability vector length, i.e., lowest 
network confidence for prediction, would be 0.5. Therefore, the 
threshold of 0.75 for the lowest acceptable network confidence for 
prediction was set. Finally, the dimensions of detected structural 
members were obtained by applying a bounding box around each 
member. Fig. 11 depicts the results obtained after the implementation of 
preprocessing, geometric segmentation, and semantic segmentation 
steps on the carpark building. While the preprocessing step missed to 
filter out some parts of the floor and ceiling (Fig. 11b), the geometric 
segmentation step was capable of showing a high level of robustness for 
filtering non-structural and noise points from the point cloud (Fig. 11c). 
However, some non-structural objects possessing geometric definitions 
of structural members, highlighted with red color, remained in the point 
cloud after the geometric segmentation step, which were removed by the 
semantic segmentation step (Fig. 11d). 

4.3. Performance evaluation 

The performance of the proposed end-to-end dimensional quality 
inspection of structural members was evaluated in two different aspects. 
First, the point-wise accuracy of the method in extracting structural 
members is evaluated. Next, a quantitative accuracy analysis was 

conducted to compare the structural members’ dimensions obtained 
from the proposed method with the as-is dimensions acquired from 
manual measurements. 

4.3.1. Classification performance 
The performance of the proposed method in classifying structural 

members is evaluated by quantifying the cross-section shape similarities 
and a point-wise Final Label (FL) comparison of extracted building 
structural members with respect to the ground truth [91]. 

To quantify the cross-section shape similarities, the obtained SL of 
each extracted structural member is compared with the ground truth 
cross-section shapes. A correct prediction is defined as points in which 
the confidence of the classification network is higher than the pre
defined PVL threshold of 0.75, and the predicted SL is the same as the 
ground truth cross-section shape label. Also, points with classified cross- 

Fig. 9. Geometric segmentation of carpark study building (a) raw point cloud, (b) extraction of potential beam points, (c) extraction of potential column points, and 
(d) extraction of potential bracing points. 

Table 2 
A summary of the input values for the proposed method.  

Parameter Input 
value 

Reference 

thor_slice 50 mm Contextual knowledge of structural 
design 

The threshold value in Eq. (4) 1.645 Statistical analysis knowledge 
DBSCAN(epsilonhor) 0.04 [88] 
DBSCAN(Nmin_points_hor) 6 [88] 
wver_slice 50 mm Contextual knowledge of structural 

design 
Normal estimation search 

radius 
0.7 m [89] 

The threshold value in Eq. (8) 0.3 
degrees 

AS/NZS 5131:2016[90] 

DBSCAN(epsilonver) 0.04 [88] 
DBSCAN(Nmin_points_ver) 6 [88]  

Fig. 10. Classification network performance in the validation dataset.  
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section shapes with PVL lower than 0.75 are labeled as “Not identified”. 
The “Not identified” label determines non-structural points with the 
geometrical definition of structural members labeled as a potential 
structural member in the geometric segmentation step without pos
sessing a common cross-section shape of structural members. While “Not 
identified” label is a filtration mechanism for non-structural members, a 
high number of points with a “Not identified” label can also be a sign of 
classification network failure due to either having inadequate, nonrep
resentative, and poor-quality training datasets or failure of the training 
process. Therefore, the point-wise accuracy of the semantic segmenta
tion step for detecting the cross-section shapes of structural members is 
calculated by, first, considering points with “Not identified” label as 
correct prediction and then, points with “Not identified” label are 
counted as incorrect prediction, as shown in Table 3. It can be seen that 
the proposed method had an average accuracy higher than 93.5%, with 
no single accuracy lower than 92.52% across all three real-world case 
buildings. However, the accuracy was reduced in real-world case 
buildings with higher noise levels and occlusions, such as the educa
tional building. Also, considering the non-significant difference between 
considering points with the “Not identified” label as correct and incor
rect prediction, it can be concluded that the semantic segmentation 
network trained with synthetically generated datasets performed well. 
Also, the results of the semantic segmentation step along with a com
parison to ground-truth structural sections, are shown in Fig. 12. Also, 
Fig. 13 illustrates the PVL of the semantic segmentation network for case 
study buildings. It is observed that the semantic segmentation network 

faces difficulties in classifying structural members at beam/column 
connection areas and the end of structural members. Another observa
tion is that the level of correct classification of bracing members in the 
carpark building is lower than other structural members. Also, the 
performance of the proposed classification network dropped in the 
boundary structural members in the educational and laboratory 
buildings. 

Moreover, the performance of the proposed method for obtaining the 
point-wise FL of building structural members with respect to the ground 
truth is evaluated in terms of Completeness, Correctness, and Quality of 
the results, as proposed in [91] and shown in Eq. (18). 

Completeness =
|TP|

|TP| + |FN|
,Correctness =

|TP|
|TP| + |FP|

,Quality

=
|TP|

|TP| + |FN| + |FP|
(18)  

where the values of True Positive (TP), False Positive (FP), and False 
negative (FN) are obtained as proposed in [92]. The obtained results 
from the point-wise FL evaluation are shown in Table 4, in which the 
proposed method was able to extract beams with completeness, cor
rectness, and quality no smaller than 95.5%, 95.9%, and 93.8% across 
case buildings. Also, columns were extracted with completeness, cor
rectness, and quality no smaller than 90.1%, 97.8%, and 91.3% across 
case buildings. Finally, the proposed method could extract bracings with 
completeness, correctness, and quality no smaller than 85.4%, 95.2%, 
and 84.3% across case buildings. The proposed method demonstrated 
satisfactory performance for extracting structural members in real-world 
case buildings. Yet, the performance dropped in bracing members in the 
carpark building and columns in the educational building, which will be 
further investigated in the Discussion and Limitations section. 

4.3.2. Dimension acquisition performance 
To identify the accuracy of the proposed method for obtaining 

structural members’ dimensions, the ground truth of the real-world 
buildings was manually measured three times, and the average value 
was reported. Based on the quality of measurement tools and the ac
curacy of the responsible measuring personnel, a tolerance of ± 15 mm 
was obtained from manual measurement of ground truth dimensions, 

Fig. 11. (a) Raw input point cloud, (b) resulted point cloud from the preprocessing step, (c) resulted point cloud from the geometric segmentation step, and (d) 
resulted point cloud from the semantic segmentation step. 

Table 3 
Point-wise accuracy of the classification algorithm in real-world case buildings.  

Building Accuracy with the “Not 
identified” label as correct 
prediction (%) 

Accuracy considering the “Not 
identified” label as incorrect 
prediction (%) 

Carpark 
building  

96.18  94.45 

Laboratory 
building  

95.43  93.74 

Educational 
building  

94.76  92.52 

Average  95.45  93.57  
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which is consistent with tolerance values reported in previous literature 
[82,93]. The ground truth models of carpark, laboratory, and educa
tional building are shown in Fig. 14a, Fig. 15a, and Fig. 16a, respec
tively. Also, the models obtained from the proposed method along with 
the obtained dimensions are shown in Fig. 14b, Fig. 15b, and Fig. 16b, 
respectively. Details on the obtained dimensions of buildings and a 
comparison between ground truth data and obtained sizes are shown in 
Table 5, Table 6, and Table 7. 

After implementing the proposed method on case study buildings, a 
tolerance of ± 14.11 mm for beams, ±14.13 mm for columns, and ±
54.46 mm for bracing members in the carpark building was obtained. 
Also, the model had a tolerance of ± 10.91 mm for beams and ± 11.11 
mm for columns in the laboratory building. Moreover, a tolerance of ±
10.47 mm for beams and ± 13.73 mm for columns was obtained in the 
educational building. It should be noted that the width and length of B8, 
B9, B10, C7, and C8 members in the carpark building and C5 members in 

Fig. 12. The comparison of ground truth cross-section shape of structural members in (a) carpark building, (c) laboratory building, and (e) educational building with 
the obtained cross-section shape label from semantic segmentation step for (b) carpark building, (d) laboratory building, and (f) educational building. 

Fig. 13. PVL for (a) carpark building, (b) laboratory building, and (c) educational building.  
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the educational building were not reported as they had not been 
correctly captured in the point cloud dataset. Also, member C12 in the 
educational building was not detected during the geometric segmenta
tion step. Considering that the manual measurement tolerance for 

structural members was ± 15 mm, the experiments showed that the 
proposed method could provide accurate geometric information for 
beams and columns. However, the obtained geometric information for 
bracing members in the carpark building is bigger than the manual 

Table 4 
Point-wise evaluation of FL obtained from the proposed method.  

Case Building  Beam   Column   Bracing  

Comp. Corr. Quality Comp. Corr. Quality Comp. Corr. Quality 

Carpark building  97.6%  99.3%  98.4%  97.1%  98.2%  96.2% 85.4% 95.2% 84.3% 
Laboratory building  96.0%  96.6%  93.8%  96.3%  98.1%  97.0% NA NA NA 
Educational building  95.5%  95.9%  95.6%  90.1%  97.8%  91.3% NA NA NA  

Fig. 14. (a) Ground truth dimensions of the carpark building, and (b) automatically obtained dimensions from the carpark building point cloud.  
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measurement tolerance, which will be further investigated in the Dis
cussion and Limitations section. 

4.4. Discussion and limitations 

The experiments assessed the performance of the proposed end-to- 
end dimensional quality inspection method in different case study 
buildings with varying geometric features, noise, occlusion, and outliers 
levels. Despite encouraging results for dimensional quality inspection, a 
few observations were noted to be further discussed and analyzed here. 

The proposed method is capable of filtering out the non-structural 
objects in the dataset. However, issues could arise where non- 
structural objects are attached to the structural members. For instance, 
traffic signs attached to a column can cause variations between the 
obtained dimensions and ground truth data, which results in bigger 
section dimensions for some of the columns in the carpark building point 
cloud. Also, the effects of noises, outliers, and missing points are equally 
important, if not more important, to the geometric complexity of 
buildings. To quantify such factors’ impact on the proposed method’s 
performance, two spans of the laboratory building point cloud with 
different noise levels and outliers were compared. While the percentage 
of points within the acceptable PVL range (0.75 < PVL < 1) is similar 
between the two spans, the classification network had a higher per
centage of predicted points with high confidence (0.9 < PVL < 1) in the 
span with lower levels of noises and occlusions P(Low noise model) than 
the span with higher levels of noises and occlusions P(High noise model) 
in the laboratory building. Fig. 17 depicts the impact of noises, outliers, 
and missing data by comparing the PVL of the P(Low noise model) with P 
(High noise model). Considering the results of Table 3 and Fig. 17, it is 
concluded that having a high level of noise, missing data, and outliers in 
the point cloud results in lower confidence in the classification network; 
however, the overall classification accuracy of the proposed method 
remains the same. 

PVL operates as a controlling mechanism for filtering out the clas
sified points with low confidence. Fig. 18 depicts the impact of the 
minimum acceptable PVL value on the number of correctly classified 
points, incorrectly classified points, and “Not-identified” points. While 
setting a high value as the acceptable PVL threshold leads to picking 
points with the highest classification confidence and lowest number of 
incorrectly classified points, it also reduces the number of correctly 

classified points. On the contrary, a low value as the acceptable PVL 
threshold leads to a high number of incorrectly classified points. The 
optimum value of PVL is identified by calculating the ratio of incorrectly 
classified points over the correctly predicted points. The trend found in 
Fig. 18b, Fig. 18d, and Fig. 18f demonstrated that the optimal value of 
the PVL threshold happens at a local minimum in the incorrectly clas
sified points over the correctly predicted points graph. Though the 
global minima occurred at high PVL values, using such PVL threshold 
values leads to a low number of correctly classified points, as depicted in 
Fig. 18a, Fig. 18c, and Fig. 18e. Based on the data from Fig. 18, the 
optimum value for the acceptable PVL threshold depends on the level of 
noise, occlusions, and outliers in the point cloud dataset. While the 
optimum value for the acceptable PVL threshold for point clouds with 
lower levels of noises, occlusions, and outliers was obtained to be 0.775, 
as shown in Fig. 18b, point clouds with a higher level of noise, occlu
sions, and outliers required a stricter acceptable PVL threshold of 0.75 as 
depicted in Fig. 18d and Fig. 18f. 

One crucial factor impacting the accuracy of the classification 
network is the number of samples in the training dataset. This study’s 
proposed method demonstrated synthetically generated samples’ capa
bility to train the classification network. While it is believed that, 
ideally, increasing the number of training samples results in improve
ments in the overall performance of the classification network, it should 
be considered that generating redundant training samples is computa
tionally demanding and might adversely impact the performance of the 
classification network. Thus, the classification network proposed in this 
study was trained with different sample numbers within the range of 100 
to 5336 samples, and their performance in the carpark building was 
compared in terms of the percentage of points within the acceptable PVL 
range as depicted in Fig. 19. The performance of the classification 
network eventually saturated after using 800 training samples demon
strating the minimum number of training samples. Also, the maximum 
accuracy was obtained using 5336 training samples. Considering the 
obtained fixed trend of classification network’s performance and impact 
of other factors such as noises and outliers in the point cloud, it can be 
concluded that adding more training samples is unlikely to yield better 
results. 

Moreover, in all of the case study buildings, the obtained dimensions 
for beams show high accuracy. That is due to the low level of occlusion 
and attached non-structural objects for beams. However, compared to 

Fig. 15. (a) Ground truth dimensions of the laboratory building, and (b) automatically obtained dimensions from the laboratory building point cloud.  
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laboratory and educational building, the accuracy of beams in carpark 
case study buildings is lower. The main reason is that the top plate is 
missing in the point cloud; therefore, the beams’ height is smaller in the 
point cloud than in the ground truth measurements. Also, this phe
nomenon caused some parts of beam sections to have a “T” section shape 
instead of a universal beam, which increased the confusion rate of the 
classification network. Moreover, the proposed method demonstrated 
lower confidence in classifying structural members in specific areas, 
such as beam/column connections and the end of structural members. 
During the manual measurements, it was noted that the end of structural 

members is subjected to a gradual change in section size, which 
increased the confusion of the classification network. Also, due to the 
stepwise processing and removal of potential points during the geo
metric segmentation phase, beam/column connection points are 
removed from the point cloud as a part of possible beam points. 
Therefore, a gap is created in the middle of possible column points, 
which increases the confusion of the classification network. In addition, 
column C10 in the educational building and C12 in the laboratory 
building are incorrectly classified as a “Channel” section. After manual 
observations of the point cloud, it was noted that only half of these 

Fig. 16. (a) Ground truth dimensions of the educational building, and (b) automatically obtained dimensions from the educational building point cloud.  
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columns had been captured during the scanning, which was similar to a 
“Channel” section. Also, column C7 in the educational building was 
incorrectly classified as a “Box” section due to the wooden boards 
attached. Finally, column C12 in the educational building was not 
detected as a potential column member during the geometric segmen
tation step. After manual observations, it was noticed that column C12 
in the educational building had been placed to support the ceiling load 
of another building and was not a part of the educational building 
framing system. Therefore, it did not satisfy the spatial relationships 

between columns and beams, as per Eq. (9), to be labeled as a potential 
column member. 

The performance of the proposed method in obtaining dimensions 
was also affected by the attached non-structural objects along with 
changes in section sizes, such as the existence of column footing and 
pedestal. As a result, columns got a shorter length and larger section 
dimensions than those found in ground truth data in the carpark 
building. Moreover, C5 and C6 columns have a lower height value than 
the ground truth dimensions due to the lack of scanned data from the 

Table 5 
Comparison between the obtained dimensions and ground truth data for the carpark building.  

Member mark Width (mm) Height (mm) Length (mm) 

Ground truth Obtained Variation Ground truth Obtained Variation Ground truth Obtained Variation 

B1 171 182 11 356 330 26 9958 9965 7 
B2 171 160 11 356 335 21 9958 9967 9 
B3 171 185 14 356 340 16 9958 9969 11 
B4 171 176 5 356 331 25 9958 9965 7 
B5 171 181 10 356 340 16 9958 9967 9 
B6 171 156 15 356 327 29 9958 9967 9 
B7 171 145 26 356 340 16 9958 9965 7 
B8 171 NA NA 356 NA NA 9958 NA NA 
B9 171 NA NA 356 NA NA 9958 NA NA 
B10 171 NA NA 356 NA NA 9958 NA NA 
B11 191 200 9 457 441 16 23,619 23,631 12 
B12 191 170 21 457 430 27 23,619 23,631 12 
C1 203 210 7 203 211 8 2200 2195 5 
C2 203 195 8 203 194 9 2200 2189 11 
C3 203 211 8 203 214 11 2200 2190 10 
C4 203 210 7 203 210 7 2200 2196 4 
C5 203 179 24 203 170 33 2200 2186 14 
C6 203 182 21 203 152 51 2200 2168 32 
C7 203 NA NA 203 NA NA 2200 NA NA 
C8 203 NA NA 203 NA NA 2200 NA NA 
BR1 193.7 153 40.7 193.7 144 49.7 6000 5910 90 
BR2 193.7 167 26.7 193.7 151 42.7 6000 5923 77  

Table 6 
Comparison between the obtained dimensions and ground truth data for the laboratory building.  

Member mark Width (mm) Height (mm) Length (mm) 

Ground truth Obtained Variation Ground truth Obtained Variation Ground truth Obtained Variation 

B1 150 142 8 200 205 5 4700 4695 5 
B2 150 162 12 200 207 7 4700 4709 9 
B3 150 163 13 200 198 2 4700 4710 10 
B4 150 164 14 200 196 4 4700 4696 4 
B5 150 163 13 200 212 12 4700 4712 12 
B6 150 148 2 200 214 14 4700 4716 16 
B7 150 136 14 200 194 6 4700 4682 18 
B8 150 162 12 200 185 15 700 706 6 
B9 150 159 9 200 186 14 700 685 15 
B10 150 130 20 200 196 6 700 689 11 
B11 150 140 10 200 199 1 700 687 13 
B12 150 163 13 200 180 20 700 703 3 
B13 150 164 14 200 189 11 700 699 1 
B14 150 153 3 200 191 9 700 712 12 
B15 150 170 20 200 213 13 34,400 34,410 10 
B16 150 167 17 200 216 16 34,400 34,423 23 
B17 150 130 20 200 185 15 34,400 34,415 15 
C1 300 288 12 300 309 9 2300 2312 12 
C2 300 309 9 300 314 14 2300 2311 11 
C3 300 310 10 300 289 11 2300 2314 14 
C4 300 306 6 300 295 5 2300 2306 6 
C5 300 297 3 300 309 9 2300 2298 2 
C6 300 309 9 300 288 12 2300 2294 6 
C7 300 280 20 300 280 20 2300 2315 15 
C8 300 321 21 300 306 6 2300 2285 15 
C9 300 290 10 300 304 4 2300 2306 6 
C10 300 294 6 300 288 12 2300 2280 20 
C11 300 316 16 300 316 16 2300 2309 9 
C12 300 310 10 300 284 16 2300 2284 16 
C13 300 290 10 300 309 9 2300 2321 21 
C14 300 316 16 300 304 4 2300 2309 9  
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right span of the carpark building. Finally, bracing members demon
strated the highest level of dimensional variation compared to ground 
truth data. The manual observation of bracing members showed that the 
section type of these members is circular hollow sections. Due to the TLS 
device’s location, laser beams could not reach the top and bottom parts 
of the circular hollow section in bracing members. Therefore, point 
clouds of these members possess a targeted occlusion that changes the 
overall geometry of the section into a couple of circular sectors with a 
high noise level. The targeted occlusion in bracing members, also, 
increased the confusion of the classification network for detecting 
bracing members. Bracing members are diagonal members that are 
further processed by applying the PCA algorithm to align with the main 
axes. As a result, the bounding box of bracing members can be distorted 
and not fully representative of the dimensions of the bracing member. 
Therefore, it can be concluded that a high occlusion level affects overall 
performance differently. Firstly, it has adverse effects on the classifica
tion network for semantic segmentation. Secondly, it changes the shape 
and dimensions of the member bounding box for dimension obtainment. 
Those issues demand an optimized scanning plan to reduce the level of 
occlusion in the point cloud. 

Given the above discussions, the proposed method with synthetic 
data training has a few limitations. The synthetic training data for the 
classification network possess the same level of occlusion and noise. At 
the same time, it was noted that different members in the point cloud 
have different levels of noise and occlusion. A high discrepancy between 
the training and test datasets leads to a deficient performance for the 

classification network. Also, the existence of non-structural members 
attached to structural members changes the captured cross-section 
shapes leading to incorrect cross-section classification results. More
over, obtaining the dimensions of structural members via the proposed 
method mainly depends on the dimensions of the bounding box around 
each structural member. Therefore, a high noise level or the existence of 
attached non-structural objects could change the dimensions of the 
bounding box and reduce the accuracy of the proposed method. Also, 
construction projects are highly customizable and may not follow the 
common attributes of buildings stated in this work, such as sloped roofs 
or bent beams. While the proposed method can perform beyond the 
stated assumptions, i.e., sloped beams in the laboratory buildings and 
diagonal (zigzag) beams in the educational building, further geometric 
and spatial definitions may be required for non-conventional building 
designs. 

5. Conclusion and future work 

An automatic end-to-end dimensional quality inspection method for 
building structural members (beams, columns, and bracings) was 
introduced in this work. The proposed solution directly processed input 
point clouds that consist of an unorganized set of points defined by the 
coordinates (x,y,z). The method, first, segmented possible structural 
member points using geometric definitions and spatial relationships of 
each structural member. Potential beam points were segmented out 
based on the fact that beam points are often distributed horizontally in 

Table 7 
Comparison between the obtained dimensions and ground truth data for the educational building.  

Member mark Width (mm) Height (mm) Length (mm) 

Ground truth Obtained Variation Ground truth Obtained Variation Ground truth Obtained Variation 

B1 110 115 5 220 230 10 21,303 21,296 7 
B2 110 112 2 220 236 16 17,692 17,682 10 
B3 110 103 7 220 235 15 11,746 11,740 6 
B4 110 100 10 220 205 15 5759 5755 4 
B5 110 125 15 220 201 19 5759 5755 4 
B6 110 123 13 220 236 16 1285 1289 4 
B7 110 115 5 220 226 6 4880 4875 5 
C1 250 240 10 250 243 7 2300 2295 5 
C2 250 235 15 250 259 9 2300 2306 6 
C3 250 254 4 250 257 7 2300 2289 11 
C4 250 256 6 250 243 7 2300 2291 9 
C5 NA NA NA NA NA NA NA NA NA 
C6 250 242 8 250 246 4 2300 2296 4 
C7 250 246 4 250 258 8 2300 2297 3 
C8 250 256 6 250 256 6 2300 2307 7 
C9 250 258 8 250 241 9 2300 2297 3 
C10 250 241 9 250 253 3 2300 2296 4 
C11 250 242 8 250 256 6 2300 2294 6 
C12 NA NA NA NA NA NA NA NA NA  

Fig. 17. Comparison of classification PVL between noiseless and noisy synthetic case study building.  
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rectangular grids, while potential columns were segmented out as ver
tical members distributed beneath beams, and potential bracing mem
bers were defined as diagonal members distributed beneath beams. 
Next, a semantic segmentation step was performed to identify the cross- 
section shape of members found in the previous step. A framework for 
generating synthetic datasets was proposed to facilitate the adoption of 
classification networks and network training and validation purposes. 
The technique increased the repeatability and performance of the clas
sification network for different scenarios. The labels given by geometric 
and semantic segmentation steps were grouped to detect structural 
members within the point cloud data. The proposed method could 
extract beams with completeness, correctness, and quality no smaller 
than 95.5%, 95.9%, and 93.8% across case buildings. Also, complete
ness, correctness, and quality no smaller than 90.1%, 97.8%, and 91.3% 
for column extraction and 85.4%, 95.2%, and 84.3% for bracing 
extraction across case buildings were obtained utilizing the proposed 
method. Finally, a bounding box was applied around each identified 
structural member to obtain the corresponding member length and 

Fig. 18. The impact of acceptable PVL threshold on the classification network performance for (a,b) carpark building, (c,d) laboratory building, and (e,f) educa
tional building. 

Fig. 19. The impact of training sample number on the performance of the 
classification network. 
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section dimensions. The proposed method demonstrated an acceptable 
performance for detecting different structural members within case 
study point clouds. The results indicated a tolerance of ± 14.11 mm for 
beams, ±14.13 mm for columns, and ± 54.46 mm for bracing members 
in the carpark building. Also, the proposed model had a tolerance of ±
10.91 mm for beams and ± 11.11 mm for columns in the laboratory 
building. Moreover, a tolerance of ± 10.47 mm for beams and ± 13.73 
mm for columns was obtained in the educational building. Overall, it is 
concluded that the proposed end-to-end method provides objective data 
for dimensional quality inspection of structural members using point 
clouds while standing out in terms of efficiency. 

Future work further generalizes the proposed method by adding 
more geometric definitions, spatial relationships of structural members, 
and new section shape categories, such as “T” section shapes, to the 
classification network training dataset. Moreover, future work will 
consider an automated measure for adding variable levels of noise and 
occlusion to different categories in the training dataset based on the 
requirements of real-world applications. Also, a tolerance analysis will 
be conducted to predict the nature of occurred discrepancies and 
dimensional variability. Finally, different aspects of dimensional quality 
inspection, such as member positioning, will be investigated in future 
studies. 
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