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Abstract— Robotic manipulation employs the object 

detection in images to create a scene awareness and locate an 

object’s pose. In dynamic scenarios, fast multi-object 

detection and tracking are crucial. Many objects commonly 

found in household and industrial environments are 

represented by cylindrical shapes. Thus, it is available for 

robots to manipulate them through the real-time detection of 

elliptic shape primitives formed by the circular tops of these 

objects. We devise an efficient algorithm of the detection of 

elliptic shape primitives, which in turn enables robust and 

real-time robotic manipulations of such objects. The 

proposed algorithm incorporates the information of elliptic 

edge curvature, splits complex curves into arcs, classifies the 

arcs into different quadrants of a candidate elliptic shape, 

determines the quality of arc selection for ellipse fitting, and 

then retrieves the corresponding elliptic shape primitive. Our 

algorithm provides either faster or more accurate ellipse 

detection results than the current state-of-the-art methods, 

irrespective of challenging scenarios such as occluded or 

overlapping ellipses. This is verified by performance 

comparison with six state-of-the-art elliptic shape detection 

algorithms on four public image datasets. The algorithm has 

been integrated on robots to demonstrate the ability to carry 

out accurate robotic manipulations (tracking, grasping and 

stacking) of cylindrical objects in real time. We show that the 

robotic manipulator, empowered by the elliptic shape 

primitive algorithm, performs well in complex manipulation 

experiments as well as dynamic scenarios.  

Index Terms—Ellipse detection, cylindrical object 

detection, robotic manipulation, dynamic scenarios. 

 

INTRODUCTION AND RELATED WORK  

S robots are being incorporated in socio-urban 

scenarios, robotic manipulation in dynamic and 

cluttered scenarios with sufficient accuracy and real-time 

execution is needed. We discuss specific manipulation 

tasks of robotic perception and grasp of objects in 

cluttered and dynamic scenes. A comprehensive literature 

review of robotic perception and grasp is presented in [1, 

2]. Early perception for robotic grasp makes use of a set of 

2D key points and the preferred edge features to detect the 

object and deduce the object position [3-5]. Since an 

RGB-D sensor is available at a low cost, the robotic 

perception based on the 3D descriptor is more feasible 

than ever. This work further combines local template 
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descriptor, shape, depth, and scene semantic as features to 

match the objects [6, 7]. Learning methods have proven 

effective for a wide range of robotic perception problems, 

allowing a perception system to learn a mapping from 

some feature sets to various visual properties [8, 9]. The 

grasp synthesis problem is formulated as finding a 

successful grasp configuration, which is a planar position 

and an orientation visualized by rectangle representation 

[10, 11]. However, this method is not suitable for precise 

positioning for manipulations. Better precision can indeed 

be accomplished with modern object detection and deep 

learning techniques [12]. However, their performance is 

training dependent which is computationally demanding 

and limited by the training dataset. Yet, the execution time 

while detection may not necessarily be real-time [13]. As 

different grasp types are needed for different objects, some 

researchers define grasp strategies based on the shape 

primitives [14], i.e., cylinders, boxes or spheres. For 

example, most cylindrical objects can be grasped with a 

lateral cylindrical wrap or top grasp using two or more 

fingers, depending on the type of the gripper, while other 

strategies such as prismatic grasp is preferred for a cubic 

object.  

Cylindrical objects are characterized by ellipses in the 

images depicting the circular top of cylinder at most 

angles of observation; see Fig. 1 for an example. Many 

objects commonly found in household (e.g. cans, cups, 

bottles, batteries, candles) and industrial environments 

(e.g. plastic/metal caps, pipes, screw holes) are represented 

by cylindrical shape models. Tracking and robotic 

Real-time Robotic Manipulation of Cylindrical 

Objects in Dynamic Scenarios through Elliptic 

Shape Primitives 

Huixu Dong, Ehsan Asadi, Guangbin Sun, Dilip K.Prasad, I-Ming Chen, Fellow, IEEE 
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Fig. 1. Tracking ellipses in a dynamic scenario. 
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manipulation of cylindrical objects in dynamic scenarios 

can be enabled by the real-time and accurate detection of 

elliptic shape primitives. Although this approach hugely 

simplifies the problem of creating robotic scene awareness 

in the context of cylindrical objects, detection of elliptic 

shapes for this application is challenging due to the 

following reasons. The manipulative action of robot 

implies that the scene acquired by robot’s camera changes 

dynamically and the object of interest may get occluded 

behind other objects or may appear overlapping with other 

objects. Detection of occluded or overlapping ellipses in 

real-time in complex scenes is challenging. 

Besides being relevant to robotic manipulation [15-21], 

ellipse detection in images has been deemed useful in 

other applications as well, including industrial inspection 

[22], medical diagnosis [23-25], recognition of traffic 

signs [26], security [27], autonomous navigation [15, 28], 

and tracking  targets [29, 30]. Thus, there is a body of 

work related to ellipse detection in the allied field of 

image processing and computer vision. For the benefit of 

interested readers, we have included a review of 

contemporary ellipse detection approaches in Appendix A. 

We note here that the current methods of ellipse detection 

are unsuitable for robotic manipulation. Robotic 

manipulation requires real-time and accurate detection of 

elliptic shape primitives, whereas the current methods are 

marred with slow execution due to heavy computational 

loads or low ellipse detection accuracy, sometimes both. 

In this paper, we address the need of real-time and 

accurate detection of elliptic shape primitives for the 

purpose of robotic manipulation.  

In this paper, we propose a novel solution for robotic 

manipulation of cylindrical objects through a fast and 

accurate ellipse detection approach from the edge map of 

RGB or gray images captured using robotic camera sensor. 

Ellipse detection performance, as relevant to manipulation 

task, can be characterized by F-measure (balance between 

precision and recall of detection of ellipses) and average 

time taken by our ellipse detection algorithm to detect the 

ellipses in each image. Our approach balances precision 

and recall using gradient and curvature properties of arcs 

from elliptic shapes to cluster suitable arcs and fit ellipses 

to the clustered arcs. Real-time execution is achieved by 

two mechanisms. First, gradient and curvature properties 

are computed only once and reused in several steps of the 

algorithm. Second, computationally inexpensive and 

simple mechanisms for clustering and ellipse fitting have 

been devised. In addition, multiple filters at various stages 

incrementally exclude irrelevant arcs, thus improving the 

F-measure and reducing the computation time 

simultaneously. We show superior performance in ellipse 

detection as compared to state-of-the-art algorithms and 

demonstrate its successful incorporation in robotic 

manipulation experiments in dynamic scenarios.   

We highlight the novelties of our work. Foremost, our 

work provides a first solution, to the best of our 

knowledge, for robotic manipulation of cylindrical objects 

in dynamic environments using elliptic shape primitives 

only. The second novelty is our vision of repeated use of 

inexpensively computed but robust geometric properties of 

arcs of ellipses, such as smoothness, continuity, concavity-

convexity, etc. Our algorithm also incorporates several 

novel aspects. First, we use a novel way of analyzing 

convexity and concavity properties, which is more 

accurate and costs less computation than the contemporary 

methods [31]. Removal of inflexion points and turning 

points make it further robust. Second, we use a simple and 

cost-effective approach for determining ellipse centers 

with better accuracy than the existing approaches. Third, 

we use a new arc group filtering strategy, namely distance 

constraint of ellipse fitting for selecting better arc groups, 

and employ length ratios to validate ellipse detections.  

The rest of this paper is organized as follows. Section II 

presents the proposed algorithm for detection of elliptic 

shape primitives. Section III investigates the algorithm 

controls and compares its performance with the state-of-

the-art algorithms in ellipse detection. It also verifies 

suitability of the algorithm for robotic manipulation. 

Section IV presents integration of the algorithm in robotic 

system. Section V provides results of robotic experiments 

for stationary cylinders as well as dynamic scenarios. The 

paper is concluded in Section VI. 

DETECTION OF ELLIPTIC SHAPES IN IMAGES 

Our algorithm for detection of elliptic shapes in images 

comprises of four main blocks, namely, pre-processing, 

arc processing, ellipse fitting, and ellipse validation.  

Pre-processing  

Edge image of the input image is obtained using Canny 

edge detector [32] with auto-thresholding. Every edge 

point  𝑝𝑖  with coordinates (𝑥𝑖 , 𝑦𝑖) is classified into two 

classes ‘+’ and ‘–’, based on the sign of the gradient  𝜂𝑖 at 

 𝑝𝑖 , as follows:  

Χ(𝑝𝑖) = {
+   if  𝑡𝑎𝑛(𝜂𝑖) > 0 

 −   if 𝑡𝑎𝑛(𝜂𝑖) < 0 .
                        (1) 

Although it is difficult to obtain the accurate values of 

𝜂𝑖 in digital images [33], Χ(𝑝𝑖) is not sensitive to the 

accuracy of 𝜂𝑖. Sobel derivatives compute 𝜂𝑖 

inexpensively. The edge points that encounter trivial cases 

of 𝑑𝑥 or 𝑑𝑦 being zero are discarded. We note that if an 

edge curve is hypothetically on an ellipse, the edge points 

with the positive gradient directions, i.e. Χ(𝑝𝑖) = +, rest 

on the first and third quadrants of the ellipse (𝑝𝑖 ∈
{I ∪ III}) while the other arcs belong to the second and 

fourth quadrants of the ellipse (𝑝𝑖 ∈ {II ∪ IV }), as 

illustrated in Fig. 2. Edge curves are identified using 8-

connectivity of two consecutive edge points.  

A B C D

E F G H  
Fig. 2. An example of pre-processing. The initial image(A); the edge 

images along two edge directions by gradient signs (B, C); the edge 

images after the process of 8-connectivity(D,E);the arcs enclosed by 

oriented bounding boxes(F,G);the image after pre-processing(H). 
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First stage of filtering is now incorporated in two steps. 

Short edge curves may not have sufficient information for 

ellipse detection. Thus, curves with number of edge points 

less than 𝑇𝑛 are removed. In the second step, edge curves 

with almost no curvature, i.e. almost linear curves are 

removed. We use an oriented bounding box with the 

minimum area, which is denoted as 𝑂𝐵𝐵𝑚𝑖𝑛, to enclose a 

curve[34]. If the minimum side length of 𝑂𝐵𝐵𝑚𝑖𝑛 is less 

than a threshold 𝑇𝑂, we can discard this curve. 

Arc Processing 

This block is divided into three parts. The first part 

extracts smooth and continuous arcs. The second part 

classifies the into four quadrants. The third part groups the 

arcs such that an ellipse can be fit on each group.  

Arc selection 

In this step, continuous and smooth arcs are identified 

from the edge curves. This is done by splitting curves 

where sudden changes in curvature are encountered. The 

sudden change may be in terms of the amount (referred to 

as turning point) or the direction of change (referred to as 

an inflexion point). We perform this as follows. We fit an 

edge curve by a series of line segments using [35] so that 

the curve can be denoted as {𝑙1, 𝑙2, … , 𝑙N}, as shown in Fig. 

3(A). The line segment approximation of a curve reduces 

the computational cost since the subsequent calculation is 

only performed on the dominant points of the curve (i.e. 

the endpoint of the line segments of the curve) instead of 

all the points. The vector angle between consecutive line 

segments are defined as  𝜃𝑖(𝑖 = 1,2, … , 𝑛) whose direction 

is from 𝑙𝑖 to 𝑙𝑖+1 and the range lies in between −𝜋 and 𝜋.   

We set a threshold (𝑇𝜃) to evaluate the amount of the 

change between the 𝑖th angle 𝜃𝑖 and the (𝑖 + 1)th angle 

𝜃𝑖+1. Thus, turning corners are determined as           

|𝜽𝑖+1 − 𝜽𝑖|  > 𝑇𝜃 . 𝑇𝜃  is set sufficiently high to conclude a 

large change in amount as well as direction change in a 

curvature. Large difference between two consecutive 

angles (𝜃𝑖 , 𝜃𝑖+1) of the same sign indicates turning points 

and the large difference between two consecutive angles 

(𝜃𝑖, 𝜃𝑖+1) of opposite signs indicates inflexion points. The 

algorithm of arc extraction is given in Algorithm I after 

the Appendix. The filtering steps of preprocessing block 

are used again to discard arcs with insufficient length or 

curvature.  

𝑙1  

𝑙2  

𝑙3  

𝑙4  

𝑙5  

𝑙6  

𝑙7  

𝑙8  

𝑙9 

𝑙10  

A

𝜃1  

𝜃2  

𝜃3  

𝜃4  

𝜃5  

𝜃6  

𝜃7  

𝜃8  

𝜃9 

𝜃10  

𝑝4  

𝑝7  

B

𝑙11  

Fig. 3.  A curve fitted by a series of line segments (A); an arc extraction 

by splitting an arc at a change of direction of curvature 𝑝4 and a large 

change of curvature 𝑝7. Line segments with arrows represents the 

directions of curvatures of arcs and the red rectangle frames denote 

bounding boxes enclosing arcs extracted. 

D E

𝑃  

𝑄  

𝑃  

𝑄  

A B C  
Fig. 4.  Arc classification based on the convexity-concavity. 𝐴𝑢 and 𝐴𝑙 

represent the upper area and lower area, respectively. 𝐴𝑢 > 𝐴𝑙(A); 𝐴𝑢 <
𝐴𝑙(B); 𝐴𝑢 = 𝐴𝑙(C); 𝑃 and 𝑄 denote the midpoints of the arc and the line 

segment formed by the two endpoints of arc, respectively.        

I 

III 

II 

IV 

A B

𝑒1
𝑙

 

𝑒4
𝑙

 

𝑒2
𝑟

 

𝑒3
𝑟

 

I II 

III IV 

𝑒3
𝑙

 

𝑒2
𝑙

 𝑒1
𝑟

 

𝑒4
𝑟

 

𝑥  

𝑦 

𝑦 

𝑥  

 
Fig. 5.  Arc classification. 𝑒𝑖

𝑙 and 𝑒𝑖
𝑟 denote the left and right endpoints 

of an arc.  

Arc grouping  

   Arcs from the same ellipse must satisfy the 

corresponding convexity-concavity for each other. In our 

approach, we define convexity and concavity as follows 

(illustrated in Fig. 4): if the midpoint position of an arc is 

higher than the midpoint position of a line segment formed 

by the endpoints of an arc, the arc is convex; if it is lower 

than the arc is concave; and if a decision cannot be made, 

the arc is discarded. We denote the concavity and 

convexity as: 

           Θ(𝑒) = {
+    if 𝑒 is   𝑐𝑜𝑛𝑣𝑒𝑥;      

   −    if 𝑒 is   𝑐𝑜𝑛𝑐𝑎𝑣𝑒.       
                    (2) 

From our definition, the arcs in the first and second 

quadrants of an ellipse are convex and the arcs in the third 

and fourth quadrants are concave. Thus, using Θ(𝑒) and 

Χ(𝑝𝑖) of the midpoint of the arc is used to classify each arc 

into a unique quadrant, see Fig. 5 for example. We note 

that [31, 36] use the difference between the upper and 

lower areas to determine the convexity-concavity of arcs. 

Computation of areas is more expensive than computation 

of the relative positions. Moreover, these methods fail if 

the arc has inflexion points, see Fig. 4(C) for example. 

Since our algorithm already removes inflexion points, its 

performance on the detection accuracy is better than 

others. Verifications are provided in the experiments.  

Arc Grouping Based on Geometric Constraints 

   A set of three arcs 𝜏𝑎𝑏𝑐 = (𝑒𝑎, 𝑒𝑏 , 𝑒𝑐) are chosen as a 

triplet depending on the below grouping constraints, which 

indicate that the arcs likely belong to the same ellipse. 

Accordingly, four combinations of a triplet of arcs that do 

not belong to the same quadrant are made, as follows: 

(𝑒𝑎, 𝑒𝑏 , 𝑒𝑐) ∈ {(I, II, III ), (I, II, IV ), (II, III, IV ), (I, III, IV )} 

where 𝑎, 𝑏, 𝑐 are the indexes of different arcs, as shown in 

Fig. 5. We choose a pair of arcs 𝑝𝑎𝑏 = (𝑒𝑎, 𝑒𝑏) from the 

two subsequent quadrants in counter-clockwise order, such 

as (𝑒𝑎, 𝑒𝑏) ∈ {(I, II), (II, III), (III, IV), (IV, I)}. Thus, a 

triplet is made up of two pairs of arcs sharing an arc, 

𝜏𝑎𝑏𝑐 = {(𝑝𝑎𝑏 , 𝑝𝑐𝑑)| 𝑒𝑏 ≡ 𝑒𝑑}. We use the relative position 

among arcs to sort arcs sets. For instance, in Fig. 5, along 

the horizontal axis, the coordinates of  𝑒1
𝑙 and 𝑒4

𝑙 must be 

bigger than that of 𝑒2
𝑟 and  𝑒3

𝑟. 
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Fig. 6.  Illustration of the calculation method of the elliptic center. The 

methods of estimating the elliptic center proposed by others (A) and us 
(B, C). The red line segments are the two longest ones in all line 

segments(B). 𝑃𝑖 denotes endpoints of arcs 𝑒𝑎 , 𝑒𝑏 , 𝑒𝑐; 𝑃𝑖𝑗 represents the 

intersection of the tangent lines through 𝑃𝑖 and 𝑃𝑗. 𝑀𝑖𝑗 is the midpoint of 

the line segment 𝑃𝑖𝑃𝑗. 𝑙𝑖𝑗 indicates the line formed by 𝑃𝑖𝑗  and 𝑀𝑖𝑗.  The 

shifted intersection points (yellow dots) are formed by the shifted lines 
(yellow lines) jointing the midpoints of the chords and the intersections 

of the tangent lines when the slope of the line through the midpoint 𝑃34 

of the arc 𝑎𝑏 is not correct due to image noise. 𝑖, 𝑗 = 1,2,3,4,5,6. 

 

Similarly, along the vertical axis, the coordinates of 𝑒3
𝑙 

and 𝑒4
𝑟 must be smaller than that of 𝑒2

𝑙 and 𝑒1
𝑟 (Fig. 5). A 

tolerance of 1 pixel between two sides of inequalities is 

included because the pixels on the coordinate axes have 

been discarded. The locations of centers of such arcs are 

also considered as an additional constraint for selecting 

potential arcs. If the centers of such arcs in a triplet rest on 

the same area within a range, it is highly likely that they fit 

the same ellipse. Sometimes, arcs belonging to different 

ellipses may merge together to fit one ellipse. The 

constraint of the distances between midpoints of arcs and 

the centers of arcs are applied to avoiding false detections. 

Ellipse fitting and parameter determination 

We split the task of determining the parameters of 

ellipses into three sub-tasks, confirming the elliptic 

centers, using distance constraint for ellipse fitting, and 

determining the remaining parameters.       

Confirming the elliptic centers 

The geometric characteristics used for retrieving the 

centres of the ellipses are presented here. The geometric 

properties of points and tangents in ellipses are used for 

finding elliptic centres [37-41]. The elliptic centre is the 

intersection of the lines connecting the midpoints of 

chords and the intersection formed by the tangents through 

the endpoints of arcs. Although the method can detect the 

centre of a small ellipse, the slopes of tangents could 

contain many errors due to the image noise and the 

digitization of the image [36], as shown in Fig. 6(A). Our 

new approach avoids this case, as described below.  

The arc pair whose arcs satisfy two geometric 

constraints (𝑖)convexity-concavity and (𝑖𝑖) relative 

positions are chosen for calculating elliptic centre. The 

centre is estimated based on the maximum distances 

among endpoints of arcs for a pair of arcs. Specifically, 

endpoints of a pair of arcs can form (
4
2

) line segments. 

Fig. 6(B) is shows an example. We extract endpoints 
(𝑃1, 𝑃3, 𝑃4) forming the two longest line segments 

(𝑃1𝑃3, 𝑃1𝑃4).  (𝑃13, 𝑃14) are intersection points of the 

corresponding tangents. (𝑀13, 𝑀14) are mid points of the 

two line segments (𝑃1𝑃3, 𝑃1𝑃4). The elliptic centre is the 

intersection of two lines (𝑙13, 𝑙14) passing through 

intersection points (𝑃13, 𝑃14) and mid points (𝑀13, 𝑀14). 

The coordinates and gradient of endpoints of an arc are 

expressed as {𝑥𝑖 , 𝑦𝑖 , 𝜃𝑖|𝑖 = 1,2,3,4}. The coordinates of 

midpoints (𝑀13, 𝑀14) of the line segments 𝑃1𝑃3 and 𝑃1𝑃4 

are derived by Eq.(3). Similarly, the coordinates of 

intersections (𝑃13, 𝑃14) are expressed in Eq.(4). We 

calculate the slope 𝑞1 of the line segment 𝑃1𝑃3 by Eq.(5) 

and the slope 𝑞2 of the line 𝑙13 passing 𝑀13 and 𝑃13  is 

obtained through Eq. (6).  

  𝑥𝑀13
=

𝑥1+𝑥3

2
, 𝑦𝑀13

=
𝑦1+𝑦3

2
,  

  𝑥𝑀14
=

𝑥1+𝑥4

2
, 𝑦𝑀14

=
𝑦1+𝑦4

2
 ;                  (3) 

    𝑥𝑃13
=

𝑦1−𝜃1𝑥1−𝑦3+𝜃3𝑥3

𝜃3−𝜃1
, 𝑦𝑃13

=
𝜃1𝑦3−𝜃3𝑦1+𝜃3𝜃1(𝑥1−𝑥3)

𝜃3−𝜃1
, 

   𝑥𝑃14
=

𝑦1−𝜃1𝑥1−𝑦4+𝜃4𝑥4

𝜃4−𝜃1
, 𝑦𝑃14

=
𝜃1𝑦4−𝜃4𝑦1+𝜃4𝜃1(𝑥1−𝑥4)

𝜃4−𝜃1
;(4)  

 𝑞1 =
𝑦1−𝑦3

𝑥1−𝑥3
,  𝑞3 =

𝑦1−𝑦4

𝑥1−𝑥4
;                      (5)  

            𝑞2 =
𝑦𝑃13−𝑦𝑀13

𝑥𝑃13−𝑥𝑀13

=
(𝜃3+𝜃1)(𝑦3−𝑦1)+2𝜃3𝜃1(𝑥1−𝑥3)

2(𝑦3−𝑦1)−(𝜃3+𝜃1)(𝑥1−𝑥3)
,        

      

            𝑞4 =
𝑦𝑃14−𝑦𝑀14

𝑥𝑃14−𝑥𝑀14

=
(𝜃4+𝜃1)(𝑦4−𝑦1)+2𝜃4𝜃1(𝑥1−𝑥4)

2(𝑦4−𝑦1)−(𝜃4+𝜃1)(𝑥1−𝑥4)
.    (6)  

Thus, the coordinates of the centre 𝐶𝑎𝑏 can be derived 

according to the proposed method as follows,  

                     𝑥𝐶𝑎𝑏 =
𝑦𝑀14−𝑞4𝑥𝑀14−𝑦𝑀13+𝑞2𝑥𝑀13

𝑞2−𝑞4
 , 

              𝑦𝐶𝑎𝑏 =
𝑞2𝑦𝑀14−𝑞4𝑦𝑀13+𝑞2𝑞4(𝑥𝑀14−𝑥𝑀13)

𝑞2−𝑞4
 .     (7) 

Using the same method, we can obtain the centre of a pair 

of arcs  𝑝𝑐𝑑 = (𝑒𝑐 , 𝑒𝑑) |𝑒𝑑 ≡ 𝑒𝑏.  We consider that a set of 

arcs 𝜏𝑎𝑏𝑐 = {(𝑝𝑎𝑏 , 𝑝𝑐𝑑)| 𝑒𝑏 ≡ 𝑒𝑑} can consist of the same 

ellipse if and only if the distance of the centres of two 

pairs (𝑝𝑎𝑏 , 𝑝𝑐𝑑) lies within a given threshold 𝑇𝑐. 

Theoretically, six intersections formed by a set of arcs 

𝜏𝑎𝑏𝑐 should be coincident with each other. However, due 

to the presence of noise and inaccurate edge angles, the 

geometric centres will shift into neighbourhoods of initial 

points such that these centres show a distribution in the 

parameter space of ellipse, as illustrated in Fig. 6(C). 

Unlike conventional detection methods of ellipse centres 

by obtaining the median of the coordinates of a set of 

intersections in [31, 42], we also generate the centre whose 

coordinates are obtained by iterative mean-shift clustering 

algorithm [43] in Fig. 7(C).   
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A B C  
Fig. 7.  Procedure of a center estimation by mean-shift clustering 

algorithm. The intersections generated by two pairs of arcs (A); the 

center clusters enclosed by the dash circles with the mean-shift 
algorithm(B); the determined center (C).  
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Fig. 9.  Geometric schematic of parameter estimation. 

 

Distance Constraint for Ellipse Fitting 

After determining elliptic centre, we filter the arc 

groups to select better groups for ellipse fitting and reduce 

false positives. In general, the distances between points on 

arcs and the elliptic centre should fall in a suitable range. 

For simplicity and computation efficiency, we just use 

midpoints of arcs to get the distance between a point on an 

arc and the elliptic centre. We define the following 

function Γ(𝑒𝑎, 𝑒𝑏 , 𝑒𝑐) to describe the distance constraint 

for discarding the false positive detections: 

Γ(𝑒𝑎, 𝑒𝑏 , 𝑒𝑐) =
𝑚𝑎𝑥(𝑑𝑎 , 𝑑𝑏 , 𝑑𝑐)

𝑚𝑖𝑛(𝑑𝑎, 𝑑𝑏 , 𝑑𝑐)
>  𝑇𝑓 

where 𝑚𝑎𝑥(𝑑𝑎 , 𝑑𝑏 , 𝑑𝑐) and 𝑚𝑖𝑛(𝑑𝑎, 𝑑𝑏 , 𝑑𝑐) are the 

estimated minimum and maximum values among three 

distances 𝑑𝑎 , 𝑑𝑏 , 𝑑𝑐 between midpoints 𝑃𝑎, 𝑃𝑏 , 𝑃𝑐 of three 

arcs 𝑒𝑎, 𝑒𝑏, 𝑒𝑐 and the centre 𝐶 estimated in above 

subsection, respectively, as seen in Fig. 8. If the distance 

constraint Γ(𝑒𝑎, 𝑒𝑏 , 𝑒𝑐) > 𝑇𝑓 is satisfied, the arc is retained 

for detection of ellipses. The threshold 𝑇𝑓 is set to 5 in this 

work. The method ensures that an incorrect ellipse 

corresponding to these three arcs is not detected since 

Γ(𝑒𝑎, 𝑒𝑏 , 𝑒𝑐) of a triplet of arcs is beyond the 

corresponding threshold 𝑇𝑓.  

Estimation of ellipse parameters 
To obtain the remaining parameters, we decompose the 

parameter space of an ellipse for the ratio 𝑁 of the ellipse 
minor semi-axes length B to major semi-axes length A and 
other defined parameter 𝐾 (𝐾 = tan 𝜌, ρ is the orientation 
of an ellipse), as described in [31, 41, 44, 45]. The 
equation that expresses 𝑁 in terms of 𝐾 is provided as  

𝑁2 = −
(𝑞1−𝐾)(𝑞2−𝐾)

(1+𝑞1𝐾)(1+𝑞2𝐾)
,                           (8)                

with 𝛼 = 𝑞1𝑞2 − 𝑞3𝑞4 and 𝛽 = 𝑞2𝑞4(𝑞3 − 𝑞1) +
𝑞1𝑞3(𝑞4 − 𝑞2) + (𝑞1 + 𝑞2 − 𝑞3 − 𝑞4).Thus, 

𝐾 = ±√1 −
𝛽

𝛼
.                              (9)                                                                      

For each pair of points above, the 𝑁 − 𝐾 accumulator is 
continuously updated according to Eq. (8) and we can get 
the highest peaks of the values of 𝑁 and 𝜌 are in two 1D 
accumulators. Here the ellipse polar equations and 
coordinate transformation relations are applied to 
transforming the coordinate (𝑥𝑖 , 𝑦𝑖) of a point on an arc in 
the world coordinate system to the coordinate (𝑥𝑜 , 𝑦𝑜) in 
the ellipse coordinate system. In two dimensions, the 
coordinate transformation is done in the following way, 

[
𝑥𝑜

𝑦𝑜
] = [

    cos 𝜌   sin 𝜌 
− sin 𝜌   cos 𝜌

] [
𝑥𝑖 − 𝑥𝑐

𝑦𝑖 − 𝑦𝑐
].                  (10) 

According to Eq.(8-10),we obtain the following equations, 

         𝑥𝑜 =
(𝑥𝑖−𝑥𝑐)+(𝑦𝑖−𝑦𝑐)𝐾

√𝐾2+1
,𝑦𝑜 =

(𝑦𝑖−𝑦𝑐)−(𝑥𝑖−𝑥𝑐)𝐾

√𝐾2+1
.         (11)                                                                         

Referred to[44], 𝐴𝑥 is estimated as follows, 

𝐴𝑥 = √
𝑥𝑜

2𝑁2+𝑦𝑜
2

𝑁2(1+𝐾2)
.                             (12) 

Finally, combining 𝐴𝑥 = 𝐴 cos 𝜌 and =
𝐵

𝐴
 , we can identify 

an ellipse candidate with a parameter set (𝑥𝑐 , 𝑦𝑐 , 𝑁, 𝐾, 𝐴), 
as shown in Fig. 9. 

Ellipse Validation 

   Arcs that satisfy the three geometric constraints above 

still may consist of an invalid ellipse, such as false 

positives or duplicated ones. Therefore, we perform ellipse 

validation for filtering false detections by identification of 

invalid or duplicate ellipses.      

Validation by the ratio of the length 

The ratio of the sum of the long and width lengths of 

bounding box enclosing an arc to the sum of the major and 

minor semi-axes lengths (𝐴, 𝐵 respectively) can be 

regarded as a measurement of circumference. Such 

scheme is less sensitive to the quantization problem in the 

pixel count feature than that of just considering 

independent pixel separately. Assuming that an ellipse is 

fit by the triplet 𝜏 = (𝑎1, 𝑎2, 𝑎3) enclosed by bounding 

boxes with the size of 𝑚𝑖 × 𝑛𝑖(𝑖 = 1,2,3), we define a 

function Κ(𝜏) as follows,   

                          Κ(𝜏) =
∑ (𝑚𝑖+𝑛𝑖)3

𝑖=1

3(𝐴+𝐵)
.                           (13) 

A higher value of Κ(𝜏) implies a larger probability of a 
candidate ellipse being a real one, as illustrated in Fig. 
10(A). If Κ(𝜏) exceeds a threshold (𝑇𝑙), the ellipse 
candidate can be verified further by the below constraint, 

otherwise it is discarded. We define a score 𝑠(Κ(𝜏)) of  

Κ(𝜏), to represent the probability of a set of arcs consisting 
of a real ellipse. Based on a related concept, Prasad et al. 
[37][23] use the angular circumference ratio which needs 
the computation of the angle subtended by each arc on the 
center, which increases additional burden. However, our 
validation strategy is significantly faster.  
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Fig. 10.  (A) Ellipse validation by the ratio of the sum of 𝑚 and 𝑛 to the 

sum of 𝐴 and 𝐵.  (B) Ellipse validation via arc circumference ratio.  

 

Validation via the ratio of the circumference 

Supposing that the coordinate of point on an arc is 

(𝑥𝑖 , 𝑦𝑖), we put (𝑥𝑖 , 𝑦𝑖) into the follows equations: 

                      𝑋 =
[(𝑥𝑖−𝑥𝑐) cos 𝜌+(𝑦𝑖−𝑦𝑐) sin 𝜌]2

𝐴2 , 

                      𝑌 =
[(𝑦𝑖−𝑦𝑐) cos 𝜌−(𝑥𝑖−𝑥𝑐) sin 𝜌]2

𝐵2               (14) 

where  𝑥𝑐 and 𝑦𝑐 represent the centre and 𝜌 donates the 

orientation of a detected ellipse. In Fig. 10(B), the 

differential distance 𝑑 between a detected elliptic arc and 

an edge of a real ellipse arc are given as follows: 

                                     𝑑 = |𝑋 + 𝑌 − 1|.                  (15) 

If 𝑑 is less than a threshold (𝑇𝑑), it implies that the pixel 

(𝑥𝑖 , 𝑦𝑖) is close to the edge of the detected ellipse. We 

define a function 𝜓(𝜏𝑎𝑏𝑐), which is the ratio of the number 

of a set of pixels ℬ satisfying the above constraint to the 

number of pixels in the triplet 𝜏𝑎𝑏𝑐 used for detecting an 

ellipse, 

                           𝜓(𝜏𝑎𝑏𝑐) =
𝑁ℬ

𝑁𝑎+𝑁𝑏+𝑁𝑐
                     (16)      

where 𝑁𝑎 ,  𝑁𝑏 and 𝑁𝑐 are the numbers of pixels on the 

three arcs, respectively and 𝑁ℬ is the number of pixels in 

ℬ. If 𝜓(𝜏𝑎𝑏𝑐) is more than a threshold (𝑇𝜓), the detected 

ellipse is considered as a valid one, otherwise this ellipse 

is given up. The corresponding score 𝑠(𝜓(𝜏𝑎𝑏𝑐)) whose 

value is 𝜓(𝜏𝑎𝑏𝑐) is defined for clustering.  

Clustering by similarities among detected ellipses 

 Multiple candidate ellipses may be fit to form the same 

“real” ellipse as multiple arc sets may belong to the same 

“real” ellipse. In order to ensure a “real ellipse” is just 

made up of one arc set, such candidate ellipses are 

clustered depending on the order of the scores [37]. All 

valid ellipses with the same centre are ranked according to 

the total decreasing score (𝑠(Κ(𝜏)) + 𝑠(𝜓(𝜏𝑎𝑏𝑐))). Then 

we use the method proposed by Bascca et al.[46] to assess 

the similarity of two ellipses. Specifically, a feature vector 

is defined as 𝑉(𝑥𝑐 , 𝑦𝑐 , 𝐴, 𝐵, 𝜌) where (𝑥𝑐 , 𝑦𝑐) represents 

the coordinates of an ellipse center, 𝐴 and 𝐵 denote the 

lengths of the semi-major and semi-minor axes and 𝜌 is 

the orientation of ellipse. The Euclidean distance between 

two feature vectors is used as the distinctiveness measure: 

            𝐷(𝑉, 𝑊) = √∑ (𝐸𝑉,𝑖 − 𝐸𝑊,𝑖)
25

𝑖=1 ,                (17) 

where 𝐸𝑉,𝑖 and 𝐸𝑊,𝑖 denote the 𝑖th parameters in the vectors 

𝑉 and 𝑊. If 𝐷(𝑉, 𝑊) is less than a threshold 𝑇𝑠, the 

ellipses 𝑉 and 𝑊 are concluded to belong to the same 

ellipse cluster. When an ellipse cannot be assigned to any 

cluster, it becomes a reference for a new cluster.  

ALGORITHM CONTROLS AND PERFORMANCE  

In this section, we investigate the suitable values of the 

thresholds which control the performance of our 

algorithm. Further, we compare the performance of our 

algorithm with state-of-the-art ellipse detection 

algorithms, namely Jia et al.[42], Fornaciari et al. [31], 

Prasad et al. [37], Bai et al. [47], Liu et al. [48], and Mai et 

al. [49]. Their source codes in C++ or MATLAB are 

available online. All the experiments are performed on a 

PC with 8GB RAM and an Intel Core i7 processor. 

We use four public datasets with different 

characteristics, including Dataset Prasad [37], 

dataset#1[31], Dataset HX and Dataset DHX. Dataset HX 

presents images taken in diverse backgrounds from socio-

urban scenarios, including households, industries, roads, 

etc. These images are randomly chosen from 16 categories 

in the ImageNet  repository [50]. Dataset DHX is 

especially relevant to robotic manipulation since it 

contains images with cylindrical objects in household or 

office environments. These images are collected randomly 

by 20 volunteers.  For taking each image, the volunteer 

placed a camera approximately 50cm from the front edge 

of a platform and 50cm above the platform surface, tilted 

down by approximately 45°. Some pictures are captured in 

a different perspective around the same type of scenario.  

Evaluation Metrics 

Performance metrics, such as F-measure and the 

execution time 𝑡 [31, 37, 51], are used for quantitative 

comparison. For a detected ellipse  𝜀𝑑 and the ground-truth 

ellipse 𝜀𝑔, the overlap ratio Φ is the Jaccard index of 

similarity between the ellipses 𝜀𝑑 and 𝜀𝑔 [37]. If the 

overlap ratio Φ satisfies Φ > Φ0 with Φ0 = 0.8, the 

detected ellipse is considered a correct detection, 

otherwise, it is counted as a miss. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 
values are computed as follows, 

          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝛺 

𝛮
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝛺

𝛭
,                 (18) 

where 𝛺 donates the number of correctly detected ellipses, 

𝛮 is the number of detected ellipses, and 𝛭 is the number 

of ground-truth ellipses. Based on Eq.(18), 𝐹­measure is 

obtained as follows, 

                   𝐹­measure =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
.           (19) 

Investigation of algorithm controls  

Performance of the ellipse detection method depends on 

the choice of threshold parameters 𝑇𝑛,𝑇𝑂,𝑇𝜃 ,𝑇𝑐, 𝑇𝑙 ,𝑇𝑑,𝑇𝜓,𝑇𝑠. 

It is likely that one set of values cannot suit all images. 

However, general rules of thumb can be derived for each 

parameter, fixing other threshold parameters, such that 

balanced performance can be achieved in terms of 𝐹-

𝑚𝑒𝑎𝑠𝑢𝑟𝑒 and the computation time (𝑡), as illustrated in 

Fig. 11 and Fig. 12.   

𝐹-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 drastically reduces for 𝑇𝑛>15, while the 

execution time remains stable in Fig. 11(A). 𝑇𝑛 is therefore 

set as 15. Fig. 11(B) shows the effect of the threshold 𝑇𝑂. 

It is clear that the detection effectiveness does not vary 

significantly but the computation time increases when the 

threshold  𝑇𝑂> 20. Thus, we choose 20 as the value of 𝑇𝑂. 
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Fig. 11.  The effectiveness values and execution times for four thresholds 𝑇𝑛,𝑇𝑂,𝑇𝜃,𝑇𝑐. 

 

Fig. 12.  The effectiveness values and execution times for four thresholds 𝑇𝑙,𝑇𝑑,𝑇𝜓,𝑇𝑠. 
 

As observed in Fig. 11(C), the best performance is 

obtained with values of 𝑇𝜃  between 30 and 40 for 𝐹-

𝑚𝑒𝑎𝑠𝑢𝑟𝑒. The execution time 𝑡 decreases as values of 𝑇𝜃  

increase. As a result, we set 𝑇𝜃 = 35𝑜. As clearly 

illustrated in Fig. 11(D), the best thresholds are 25 and 30 

for the detection effectiveness, but the execution time of a 

30 threshold is more time demanding than that of a 25 

threshold. We choose 𝑇𝑐 = 25 as a good trade-off to gain a 

good effectiveness and keep an execution time an 

acceptable value. For a ratio threshold 𝑇𝑙> 0.6, there is a 

significant decline in the detection effectiveness and the 

computational time also decreases due to the time decrease 

of the clustering step. We set 𝑇𝑙 = 0.5 because this value 

can guarantee the best effectiveness and an acceptable 

execution time comparing with a value of 𝑇𝑙 = 0.4,as 

shown in Fig. 12(A). Figure 12(B) illustrates that the 

detection effectiveness is basically stable, while the time 

used for detecting ellipses slightly increases with the 

threshold 𝑇𝑑. In this case, the best trade-off between the 

detection effectiveness and cost time is confirmed with 

𝑇𝑑 = 1. The detection effectiveness dramatically decreases 

when the threshold 𝑇𝜓> 0.5 because more arc sets are 

considered as invalid ones, while the fluctuation of the 

execution time is small in general, as shown in Fig. 12(C). 

We adopt 𝑇𝜓 = 0.5. Setting 𝑇𝑠 > 25, has negative impact 

on the detection effectiveness, as illustrated in Fig. 12(D). 

Finally, we adopt  𝑇𝑠 = 25. 
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TABLE I. Comparison results for four datasets. Note that Ours1 represents the proposed method with the determination strategy of ellipse’s center 

provided in  [37-41]. 
   F-measure Time(ms) Precision Recall   F-measure Time(ms) Precision Recall 

D
a

ta
se

t 
P

ra
sa

d
 

Mai 2008 0.2535 962.2 0.4135 0.2269 

D
a

ta
se

t 
H

X
 

Mai 2008 0.2573 597.8 0.3109 0.2431 

Liu2009 0.0950 1049 0.0700 0.1505 Liu2009 0.0534 1560 0.0653 0.0575 

Bai 2009 0.2395 3470 0.2195 0.2890 Bai 2009 0.1028 4140 0.0830 0.2181 

Prasad 2012 0.7428 8300 0.8512 0.6813 Prasad 2012 0.3910 3260 0.3364 0.4669 

Fornaciari 2014 0.3661 12.61 0.8541 0.2330 Fornaciari 2014 0.3472 19.35 0.8825 0.2161 

Jia 2017 0.4332 8.42 0.7390 0.3064 Jia 2017 0.4032 15.69 0.8165 0.2677 

Ours1 0.5172 14.51 0.6214 0.4429 Ours1 0.4128 22.16 0.7375 0.2866 

Ours 0.5549 14.97 0.6437 0.4876 Ours 0.4467 22.52 0.7836 0.3124 

D
a

ta
se

t 
  
#
1
 

Mai 2008 0.2604 1979.5 0.3299 0.2463 

D
a

ta
se

t 
  

D
H

X
 

Mai 2008 0.2248 1217.04 0.175 0.3737 

Liu2009 0.1170 3960 0.1248 0.1415 Liu2009 0.0342 1272.04 0.035 0.0621 

Bai 2009 0.2121 136085 0.2420 0.1909 Bai 2009 0.0648 48962.13 0.0369 0.4256 

Prasad 2012 0.4512 17130 0.4425 0.4610 Prasad 2012 0.8519 2272.0 0.8823 0.8217 

Fornaciari 2014 0.5716 16.55 0.7117 0.4777 Fornaciari 2014 0.4093 40.37 0.3585 0.4769 

Jia 2017 0.5733 12.61 0.6161 0.5361 Jia 2017 0.3377 34.68 0.2475 0.5314 

Ours1 0.6133 20.35 0.7946 0.4994 Ours1 0.8475 41.86 0.9118 0.7917 

Ours 0.6378 20.83 0.8312 0.5174 Ours 0.8906 43.30 0.9347 0.8505 

 

 We note that the detector can be tuned for the best 

performance in a specific scenario and for a specific 

application by using a learning-based approach to 

determining the best values of thresholds. Here, our 

motivation is to show that empirically chosen parameters, 

not necessarily fine-tuned for the best performance, can 

also provide a good detection performance. This indicates 

the versatility of our method. 

Performance Comparison   

The results of average 𝐹­measure values and average 

execution time are presented for four datasets in Table I. 

We compared the presented detector with six state-of-the-

art model-based methods by means of the same evaluation 

metrics, used in four public datasets with different 

characteristics. Considering the overall effectiveness, 

indicated by F-measure concerning speed, precession and 

recall factors together, our method outperforms other 6 

methods in three out of four datasets, while ranked second 

for the first dataset. 

The methods of Bai, Liu and Mai present relatively 

lower performances, especially losing ellipses in images 

with complex backgrounds. Liu’s method has good 

execution speed but very poor effectiveness. Bai’s method 

has better effectiveness on large ellipses than Mai’s 

method but still remains low. The method of Prasad et al. 

outperforms all other methods in its own dataset (Dataset 

Prasad). Our method is in the second place and close to 

Prasad’s method in terms of the 𝐹­measure. Prasad’s 

method is very time demanding though it shows relatively 

good effectiveness for detecting small and distorted 

ellipses. The results of execution time show that Jia’s 

method is the fastest one and its effectiveness is better 

than Fornaciari’s method. Fornaciari’s and Jia’s detectors 

show excellent execution speeds but suffer in detection 

effectiveness due to poor performance for small, occluded 

ellipses. In other three datasets, the proposed method is 

superior to other methods for the effectiveness, especially 

in detecting small ellipses and occluded and over-lapping 

ellipses. In terms of average execution speeds, the 

execution time of our approach is less than 1% of the 

execution time of Prasad’s method and falls behind 

methods of Fornaciari and Jia. However, the detection 

speed of our algorithm is still acceptable for real-time 

applications. Since the frequency of the video of Kinect is 

around 30Hz, the proposed detector, as well as Jia’s and 

Fornaciari’s detectors, can perform real-time ellipse 

detections. With this as a sufficient speed, the proposed 

method’s superior F-measure provides the obvious 

advantage. The detection examples from these datasets are 

provided in Figs. 13, 14. 

In terms of the individual factors, for one of the 

datasets, the ellipse detector proposed by Prasad et al. 

demonstrates a better precision and recall performance 

than our method but at a significantly higher computation 

time. Due to the computational burden, Prasad’s method is 

mostly suitable for post-processing applications where 

real-time results are not required. The two other methods 

presented by Fornaciari et al. and Jia et al. indicate a 

slightly lower computation time than ours but cannot cope 

well with detecting small and occluded ellipses, resulting 

in a high rate of wrongly detected ellipses and a low recall 

rates in complex scenes.  

   The detection speed of our method is in an acceptable 

range for real-time applications. Its recall is generally 

better than Fornaciari’s and Jia’s recalls and comparable to 

that of Prasad. Its precision is comparable to Fornaciari’s 

and Jia’s ones. Thus, our method demonstrates efficient 

real-time performance for dynamic scenarios with 

unstructured scenes, in which there are multiple ellipses 

which vary in sizes and might be partially occluded. 

Here, we discuss the reason of competitive advantages 

of the proposed method against other methods. A curve is 

split into arcs based on arc curvatures such that our 

method presents a good effectiveness in detecting small, 

occluded, and overlapping ellipses. Indeed, even though 

the arc extraction and arc grouping cost additional 

computations, they are effective in reducing the 

computations in the subsequent steps such as the arc 

grouping and arc clustering. Consequently, the detection 

process can still be real-time.  
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Fig. 13.  The detection practical examples for Dataset Prasad (the first throw rows) Dataset #1(the last three rows). 

 

 
Fig. 14.  The detection practical examples for Dataset HX(the first three rows) and Dataset DHX (the last three rows). 

 

 The reasons regarding false detections are also 

mentioned. When ellipses are heavily obscured, it may 

result in false positives (over-detection) because of 

irrelevant combinations of arcs belonging to different 

ellipses. In an arc extraction procedure, it sometimes splits 

the elliptic curves into many small arcs which do not 

contribute significant information for ellipse detection due 

to the lack of curvature, which may generate false 
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negatives (missing-detection). We conclude that if the 

detection accuracy is of paramount importance, for 

example, in life critical scenarios, the proposed method is 

not the most suitable. But for most practical applications, 

where a good balance of detection effectiveness and speed 

is sought, the proposed methods provide a good solution 

Here we compare the proposed strategy of determining 

the centre of ellipse with the existing works to verify the 

effect on the detection performance. In experiments, we 

adopt the proposed detectors with the determination of 

ellipse’s ellipse based on the mean shift algorithm and 

with that of confirming the ellipse’s center provided by 

[37-41] for comparing the detection performances. As 

shown in TableⅠ, our method with the proposed strategy 

of confirming ellipse’s centre costs more time than the 

other one. We add the tangent parameters formed by 

another pair of arcs and use mean-shift algorithm to 

improve the accuracy of estimating the centre, which 

consumes additional computational burden. However, the 

proposed method of estimating the centre performs better 

than the existing works on the four public datasets. 

Robustness Analysis of Ellipse Detection in Real Time 

We perform several experiments to further evaluate the 

algorithm’s real-time performance for robotic 

manipulation of cylindrical objects in actual static or 

dynamic conditions. The first experiment is to investigate 

the robustness of our ellipse detection method in a 

sequence of images captured from a static scene with a 

cluttered background. In the second experiment, the 

detector is evaluated in a dynamic scene in which the 

image sequence includes multiple moving objects with the 

cylindrical shape.  

Robustness Analysis of Ellipse Detection in Real Time  

We use a camera streaming a video of six cylindrical 

objects placed on a table, as illustrated in Fig. 15. The 

video contains 214 image frames and our ellipse detector 

is applied to all images for analysing the robustness of the 

method over a continued duration. The statistical data of 

detection results for all six ellipses in images are shown in 

Fig. 16. As expected, the algorithm is fast and robust to 

the threshold parameters in detecting the ellipses with a 

fixed centre and orientation and the detector can reach 

stable detection in a video stream successfully. The 

detection successes for the ellipses appearing from the left 

to the right in the horizontal axis for 214 input images are 

213, 214, 214, 214, 214, and 203 times, correspondingly. 

The standard deviations of four parameters (the centre 

coordinates, semi-major and semi-minor lengths) for the 

six detected ellipses are inn the ranges of (0.5596, 1.2051), 

(0.5857, 2.3750), (1.0899, 2.2231) and (0.7673, 2.7055). 

The standard deviations of orientations vary from 0.0160 

to 0.0849 radian. Moreover, the ratios of the mean values 

of the estimated ellipses parameters (𝑋𝑐 , 𝑌𝑐, 𝐴, 𝐵,𝑂) to the 

ground truth values for six ellipses are 0.9862, 0.9313, 

0.9756, 0.9139 and 0.9723, respectively.  

As shown in Fig. 17(A), the number of detected ellipses 

keeps a stable level over time. Figs. 17(B-E) demonstrate 

four parameters of one of the detected ellipses (shown in 

pink colour in Fig. 16) as a reference case for analysing 

the detection robustness. Basically, the coordinates (𝑋𝑐, 𝑌𝑐) 

of ellipse centre and semi-axis lengths (𝐴, 𝐵) have 

fluctuations within small ranges. Specifically, we use the 

ranges of parameters to investigate how geometric 

configurations (e.g., the centre coordinates and semi-axis 

lengths) affect the performance of our detector. One semi-

axis varies from 56 to 62, and the other changes within the 

range from 53.8 to 58.2. The centre is fixed as (1095.782, 

667.643). The fluctuation ranges of its horizontal 

coordinate are from 1093.5 to 1097.6. The vertical 

coordinate varies between 653.6 and 659.4. 

 
Fig. 15.  Real-time ellipse detection in a sequence of 214 images. A 

cluttered background with light and dark colors is used to verify the 

robustness of the presented detector.   

  
Fig. 16.  Statistic results of detecting six ellipses in a video stream. 

 
Fig. 17.  Detailed detection performance in all image frames for one of 

the objects. (F) shows the execution time for each image. 
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Fig. 18.  Snapshots of dynamic detections at 40% of full speed of robotic motion for comparing the presented detector (the first row) with  Jia’s detector 

(the second row) and Fornaciari’s detector (the third row ) at 0.2Hz sampling frequency.  

 

TABLE II.   Comparison results for various speeds.  

 F-measure Precision Recall 

1.0 of full speed 0.7885 0.9192 0.7110 

0.9 of full speed 0.7707 0.9388 0.6715 

0.8 of full speed 0.7797 0.9153 0.6930 
0.7 of full speed 0.7506 0.9265 0.6520 

0.6 of full speed 0.7873 0.9571 0.6814 

0.5 of full speed 0.7842 0.9599 0.6753 
0.4 of full speed 0.7501 0.8425 0.6760 

0.3 of full speed 0.8154 0.9474 0.7277 

 

 
Fig. 19.  Sequence of detected ellipses in a dynamic scenario with multiple 

moving cylindrical objects.  
 

Ellipse Detection in Dynamic Scenarios 

To evaluate the performance of the presented detector in 

dynamic scenarios, we construct a set of eight experiments 

of moving cylindrical objects at different speeds, and 

compare our results with the two real-time detectors, namely 

Fornaciari and Jia. In the experiments presented here, we 

use five objects: four cans with different sizes, and a cup. 

The objects are randomly placed on a board which is carried 

with the help of the experiment platform including a robotic 

arm-UR10 and a 2-finger Robotiq gripper introduced in the 

next section. We use a simple motion model where the 

manipulator base joint is rotated around 55 degrees at 

different speeds for illustrating the performance. A 

Microsoft Kinect camera mounted on a tripod next to the 

setup is used to capture the images. While executing the 

robot motion, the image sequence acquired by the camera is 

processed in real time using the proposed algorithm. The 

parameters of all detected ellipses in each image frame are 

recorded independently at every time step. Its center 

coordinates describe the position of ellipses in the frames. 

   The snapshots of the robot status and our detection results 

are shown in the top of Fig. 18 at a sampling rate of 0.2Hz. 

All detected ellipses in all image frames are shown in Fig. 

19 to demonstrate the trajectories of the objects. The results 

of the methods of Jia and Fornaciari are depicted in the 

second and third rows of Fig. 18, respectively. These 

detectors cannot discard false ellipses as they always merge 

close ellipses, which results in excessive fault detections. 

Regarding quantitative evaluation, F-measure, Precision, 

and Recall of our method are 0.7873, 0.9571 and 0.6814, 

respectively. However, the methods of Fornaciari and Jia 

have worse performances with F-measure (0.2934, 0.3130), 

Precision (0.3412, 0.3845) and Recall (0.2573, 0.2639). 

   To explore the effect of different moving speeds on the 

detection performance, eight experiments with various 

angular velocities of base motion between [0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 1.0] of the full speed (180 degrees/sec) of the 

robotic arm are performed. As seen in Table II for 

experimental results of 8 trials, we achieve stable values of 

F-measure, Precision, and Recall. The presented detector 

can keep a high detection effectiveness, yielding more than 

75.01% F-measure for the different moving speeds.  

According to the given experimental results, the motion 

speed of objects does not have a significant effect on the 

performance of the ellipse detector.  

   Failures in these experiments come from two sources. The 

first source is the cluttered background, due to which the 

presented ellipse detector cannot sometimes distinguish 

“real” elliptic edges and “false” edges from the background. 

These situations occur rarely – we observed 4 out of 19 

failures. Another source is that when the object is far away 

from the camera, the ellipses become smaller gradually until 

the detector cannot succeed with such small ellipses. 

THE SYSTEM AND PLATFORM OF ROBOTIC MANIPULATIONS 

The proposed ellipse detector could be applied to several 

robotics applications enabling the robot to mainly depend on 

2D information for rapid detection and tracking of 
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cylindrical objects. For instance, the ellipse detector could 

be deployed to track cylindrical objects carried by a service 

robot, or to track products on a conveyor belts for picking 

and placing purposes, as well as to detect cylindrical 

mechanical parts from a cluttered set of different shape 

objects for sorting them or track circular shafts and circular 

holes simultaneously for assembling purposes. Here, we 

present a sample integration of the algorithm in an actual 

robotic manipulation system.  

The robotic manipulation platform is equipped with a 6-

DOF industrial robot arm - Universal Robot 10 (for tracking 

cylindrical objects above and grasping static cylindrical 

objects) or Universal Robot 5 (for grasping dynamic 

cylindrical objects) and a 2-finger Robotiq 85 gripper 

mounted on robotic end-effector. The robot arm-UR5 and 

UR10 have the same repeatability accuracy of ±0.1 mm, 

have a reach of 95cm and 140cm with the gripper, and can 

support payloads of 5kg and 10kg, respectively. Without 

tactile feedback, the 2-Finger Robotiq 85 gripper has two 

articulated under-actuated fingers that each have two joints 

(two links per finger) driven by a single actuator. They 

automatically adapt to the shape of the object. The Kinect 

sensor that is capable of providing high quality registered 

videos of both colour and depth is fixed on a Pan-and-Tilt 

approximately 1.5 meter above the ground near a table. The 

calibration accuracy between Kinect sensor and robot arm 

base is up to an average of 3mm. A linear guide with an 

operation range between 0 to 1 m is used to carry cylindrical 

objects. Without an encoder, the stepper motor rotates a 

round and the slide on the linear guide moves 75mm. The 

system itself has deviations from the calibration between the 

camera and the robotic base, as well as the registration of 

the RGB image and the depth image together for an RGB-D 

camera. The registration deviation has the less effect than 

the calibration deviation. The offset generated by two kinds 

of deviations is a constant value. Thus, we can make up for 

these two deviations by performing several robotic grasps to 

obtain this offset. Moreover, we also can accept these two 

deviations if the gripper grasps a relatively small object with 

the size less than the maximum expanding size of the 

gripper. The robot uses the average value of the information 

of detecting an ellipse to performs a grasp, which improves 

the accuracy of robotic grasp. 

The problem of motion planning [52] is addressed using 

the RRT algorithm in Open Motion Planning Library 

(OMPL) [53] and Robot Operating System (ROS) [54] to 

produce continuous motions that connects the configuration 

of end-effector between its stationary position and a goal 

configuration for grasping while avoiding collision with 

obstacles. The motion is represented as a path in 

configuration space. The point clouds acquired by the 

Kinect camera are also used for collision avoidances as well, 

so as to ensure collision-free motion planning and safe 

manipulation. 

ROBOTIC MANIPULATION EXPERIMENTS 

We present two robotic manipulation experiments in this 

section. The first is manipulation of static cylindrical objects 

in a human-robot collaboration task. The second involves 

two robotic manipulation tasks in different scenarios with 

dynamic cylindrical objects. 

Static Cylindrical Objects 

Here, we performed a picking and stacking experiment 

with cylindrical objects, e.g., food cans. Additional 

information is needed to capture the 3D coordinate of the 

detected object to be manipulated. Here, a Microsoft Kinect 

sensor is deployed for obtaining two types of information of 

RGB and depth. The ellipse detector utilizes the RGB image 

to perform ellipse detection and the centers of the detected 

ellipses is provided as 2D pixel coordinates. The 2D pixel 

coordinates of the centers are converted to 3D world 

coordinates so that the robotic manipulator can move to the 

location and grasp the cylindrical object. The depth image, 

which is an encoded grayscale image with each value 

measuring the distance to the Kinect camera, is used to 

obtain the 3D world coordinates of the detected centroid. 

We collect 20 times for each cylindrical object to calculate 

the average value of the centres of 20 ellipses to avoid the 

issue caused by the case of the partial missing 3D data in the 

Kinect sensor. The 3D coordinates of the centers are then 

acquired from the point cloud by mapping the 2D pixels 

coordinates to the registered depth in the point cloud. As a 

grasped cylindrical object stands along the vertical direction, 

the orientation information is known to a robot. Obtaining 

the 3D coordinate of ellipse centre by the scheme above, a 

robot can make a configuration to realize a grasp.    

While various grasp types are needed for different 

objects, most of the cylindrical objects are grasped with a 

lateral cylindrical wrap using a two-finger gripper if there 

are no collision issues. Otherwise, a top grasp could be used 

to pick up an object placed in a cluttered environment. 

We consider a human-robot collaboration task, in which 

the human operator feeds some objects frequently to a 

working station that is a table. The robot’s task is to detect 

the arrival of new cylindrical objects on the right side of the 

table and subsequently stack them on the left half side of the 

table. Thus, the robot requires fast detection of multiple 

cylindrical objects on the table. It should also be aware of 

changes in the scene to identify the new objects fed by the 

operator, to update the position of the latest objects stacked 

on the left side and to track the status of an object once it 

moves from the right side to the left. We perform this task 

by deploying the proposed detector. Thus, the cylindrical 

objects are identified and tracked by detecting the top of the 

objects as ellipses. Once, a new ellipse is detected in the 

right side of the table, see Fig. 20(A-1)(A-2)(A-3), the 3D 

position of the top of the object is located as described 

above. Then the motion planning programme infers the 

picking and placing paths. Then, the inverse kinematic and 

robotic arm gets automatically triggered to pick up the 

object and stack it on the other side of the table. Once the 

ellipse moves to the left side of the table, the manipulated 

object is tracked using the real time detection of ellipses, see 

Fig. 20(B-1)(B-2)(B-3), and its state from a new detected 

object (ellipses are shown in green) is changed to a stacked 

object (ellipses are shown in red). Finally, once the object is 

placed on the back plate on the table or stacked on the top of 

another object, as show in Fig. 20(C-1)(C-2)(C-3), the 

targeted position for stacking the next object is updated by 

getting the 3D position of the latest ellipse on the left side. 
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A-1 A-2 A-3 A-4 A-5

B-1 B-2 B-3 B-4 B-5

C-1 C-2 C-3 C-4 C-5

Fig. 20.   Stacking food cans. Place the first can (A-1,2,3), stack the second can on the first can (B-1,2,3) and stack the third can on the second can (C-1,2,3). 

 

The results of ellipse detection and the state of robot arm 

at the picking instances, shown in Fig. 20, indicate 

successful positioning of objects with cylindrical shapes for 

robot manipulation purposes, such as picking, stacking and 

placing. The images indicate the detected objects using RGB 

images captured by the Kinect camera, which shows the 

states of the robot arm-UR10 and gripper at manipulating 

instances. We performed 5 groups of stacking experiments. 

The successful rate of stacking cylindrical objects reaches 

100% as it is easy for our detector and the proposed 

grasping strategy to realize ellipse-based stacking actions in 

static environments. 

Dynamic Cylindrical Objects  

We carried out two experiments with moving cylindrical 

objects to validate the performance of our ellipse detector 

for robotic manipulation in dynamic scenarios. The first 

experiment demonstrates the success rates of grasping cans 

placed on a conveyor moving at different speeds. The 

second experiment imitates an industrial line to pick up the 

cans from a linear conveyor and put them in a box.  

Our robotic grasp strategy consists of three main steps: 

perception, inference, and manipulation. In dynamic grasp 

experiments, we first use the proposed detector to detect the 

ellipse. Then, given the position where the object is placed 

by the depth information, the robot infers the next position 

of the moving object on the linear slide and robotic arm 

configuration for grasp. Accordingly, the robot moves to the 

pre-grasp position to wait for the object to be manipulated. 

Lastly, the robot adjusts the direction of the gripper to grasp 

the object, carry it to the destination and release it.  

In particular, the process is as follows. After manual 

placing of a can on the slider, the ellipse detector captures 

and tracks the position of the moving can. Then the grasp 

plan is determined by the estimating the direction and 2D 

location of the object’s center. The manipulation task is 

defined as grasping the moving object, moving it 20 cm 

above the linear guide, and carrying it until the gripper 

reaches the destination. Before robotic manipulation, the 

arm stops at the home position for about 1 second to detect a 

moving object and determine the 7-DOF gripper 

configuration. The robotic system plans a suitable path to a 

“pre-grasp” position, by using inverse kinematics, which is 

defined as 10 cm away from the actual grasping 

configuration along the approach vector (the normal to the 

palm of the gripper). After reaching the “pre-grasp” 

position, the gripper waits for the object to arrive in front of 

the gripper. When that happens, the robot moves 2 cm ahead 

of the newest object position, to perform the grasp action.  If 

it is outside the operating range of the conveyor, the robot 

waits for the new pre-grasp position from the returning 

phase. This step is needed to avoid the gripper approaching 

the object early or late and prevent pushing the object off. 

Lastly, the robot moves the grasped object to the destination, 

and the gripper opens. 

In this experiment, we did not use the point cloud to 

deduce the spatial coordinate of the cylindrical object. The 

bottlenecks are the relatively low update rate of point clouds 

and inaccurate depth data due to the noise and week 

registration characteristic using the Kinect sensor. Initially, 

we tried to obtain a group of depth information, calculate an 

average value and map to the z-coordinate, but the accuracy 

was poor. Our alternative method, to avoid the use of the 

point cloud in dynamic scenarios, is to employ the 2D data 

in RGB images and two reference positions to determine the 

position of the object on the linear guide. In this way, the 3D 

position of the center of the object and the corresponding 

pixel values of the image at the two endpoints of the 

conveyer are recorded once as reference information. Then, 

the slope of the object’s path from the conveyer belt relative 

to the robotic base is obtained. With this information, the 

pose of moving objects along the conveyor can be 

extrapolated using only pixel values of the center of moving 

ellipses obtained at a rate of video capturing. 
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Grasps of moving objects with different speeds 

   In the first set of grasp experiments, our goal is to grasp a 

can that is placed on a moving linear guide with 4 different 

speeds. Figure 21 shows the performance at each step. We 

perform four sets of experiments with different speeds, at 

0.025, 0.050, 0.075, 0.100 m/s, 30 times for each speed. The 

main factor affecting the time between picks is the operation 

range of the conveyor. Specifically, when the planned pre-

grasp position is beyond the operation range of the 

conveyor, the robot has to wait for detecting ellipse and 

sampling the speed of the can in the returning phase.    

   The success rate of grasping objects over 30 runs at each 

speed are also summarized in Table III. The robot 

successfully grasped 118 times out of 120 tries, realizing an 

overall success rate of 98.33%. Specifically, 3 out of 4 

experimental sets were accomplished without a single 

failure. The high rate of successful grasps indicates the 

robustness of proposed detector in dynamic scenarios. Table 

III also shows two cases in which the grasps failed. For 

these two failure cases, the object was touched or knocked 

down by one finger when the gripper approached it. The fast 

movement of the can result in the imprecise scheduling of 

grasp execution for the fourth set of experiments. In 

practical grasp experiments, our robotic gripper does not 

have any force or tactile feedback so that even a slight error 

in perception and path planning could result in a grasp 

failure. We believe that methods based on force or tactile 

feedback would complement the grasping system and help 

to build a more robust grasping system. However, these 

results provide strong evidence that the proposed elliptic 

shape detector can be applied in real scenarios.    

 

 
Fig. 21. The robot grasping cans on the conveyor with 4 speeds in a 

dynamic scenario. The target is enclosed by a red frame. The speeds of 
A,B,C,D are 2.5cm/s,5.0cm/s, 7.5cm/s, 10.0cm/s, respectively. Several 

detection examples for each speed are shown in the middle column. 

 
 

Table III.  Experimental results of robotic grasps in dynamic scenarios 

Speed 

(cm/s) 
Trials 

Successes 

(single-way) 

Successes 

 (Double-way) 

Failures Success 

rate 
Time(s) 

2.5 30 30 0 0 100% 0.89 

5.0 30 29 1 0 100% 0.51 

7.5 30 30 0 0 100% 0.47 

10.0 30 25 3 2 93.3% 0.35 

Results 120/t 114t 4/t 2 98.33%/a 0.47/a 

/t and /a mean the total value and the average value, respectively. 

 

Dynamic picking and placing cans in an industrial line 

In the second experiment, the task is to pick up the cans 

from the linear guide and place them in a box. Figure 22 

shows screenshots of picking and placing the objects. Our 

system first infers the position of the moving object by 

ellipse detection and then plans a path to manipulate it on a 

table. The work scene is set with 10 cans placed densely on 

two borders of the table and two persons put cans on the 

slider randomly. This is a “close-loop” automatic system. 

Once detecting the position of the object by the proposed 

detector, the robot will manipulate it to the placed 

destination-the box (near to the table) until the end. The 

robot attempts to grasp an object only once. The algorithm 

stream for detecting cylindrical objects continues to seek the 

next object so that the robot can automatically initialize the 

next grasp action. 

The grasps are considered successful if the robot can 

grasp and move the object to the destination. We declare 

failure if the robot does not achieve a grasp or drops the 

object during or after lifting. Since the maximum opening of 

the gripper is slightly bigger than that of the can, small 

errors in position estimation have a significant effect on a 

grasp outcome. This is not surprising since the rounded and 

curved shape made it prone to rolling out of the gripper as it 

closed. The speed of the linear guide is fixed to 5.0cm/s.  In 

each trial, the robot picks up the can from the slider and 

places it in the designated area. Similarly, having an 

estimated position by the ellipse detector, the robot moves to 

the pre-grasp position and wait for the object coming to the 

front of the gripper. The planning and execution time for the 

robot must match the time from obtaining the position of the 

ellipse by the detector to the position where the object 

arrives in the front of the gripper.  After getting the object, 

the robot places the can in a box near the table. We ran 30 

picking and placing experiments using 10 cans. For the 28 

rounds of experiments, we obtained a 93.3% grasp success 

rate (2 grasp failures out of 30 grasp attempts). Of the two 

failures, they were due to the estimation of inaccurate 

positions, resulting in collisions of the fingers with the 

object during the grasp attempt.  

CONCLUSION AND FUTURE WORK 

In this paper, we consider the problem of detecting 

ellipses with sufficient accuracy and speed to permit robotic 

manipulation of cylindrical objects in manipulating a 

cylinder object in real-time in complicated scenes. 

Segmenting arcs based on a changing amount of arc 

curvatures and grouping arcs depending on the arc 

convexity-concavity and mutual positions result not only in 

improving the detection effectiveness (𝐹­measure) but also 

reduces the detection time considerably.  
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A(1):Initial position A(2):Grasp preparation A(3):Pick the can A(4):Placing planning A(5):Place the can

B(1):Initial position B(4):Placing planning B(5):Place the canB(2):Grasp preparation B(3):Pick the can

C(1):Initial position C(2):Grasp preparation C(3):Pick the can C(4):Placing planning C(5):Place the can  

Fig. 22. The steps of robot picking and placing cans on the outward phase (A,C) and the returning phase(B). The target is enclosed by a red frame. 

Compared with six other recent methods of detecting 

ellipses, our extensive experiments demonstrate that our 

algorithm presents significant advantages for detecting 

ellipses on images with complex backgrounds in terms of 

trade-off between the detection effectiveness and detection 

time. In our robotic experiments, the robot successfully 

tracks a cylindrical object to operate in real time, recognizes 

a cylinder object, blocks and also sorts cylinder objects from 

ones with different shapes in a cluttered environment. 

In the future, we will update this algorithm to detect even 

smaller ellipses, heavily occluded ellipses, and well-shaped 

semi-ellipses.  We will also consider segmenting cylindrical 

objects by the presented ellipse detector and edge 

information based on deep learning to get 3D coordinates, 

which allows a robot to sort multiple circle and elliptic 

mechanical components in industrial environments. 

The proposed ellipse detection algorithm is relevant for 

visual tracking methods for robotics and we wish to explore 

this aspect also in the future work. Visual tracking methods 

that use shape-based models directly benefit from elliptic 

shape detection. Further, visual tracking methods that 

employ key point detectors can also benefit from our 

algorithm. Our algorithm identifies geometric relationships 

among multiple arcs and thus indicates key points 

representing elliptic features.  

Moreover, the proposed method cannot deduce the object 

orientation. Future works will focus on further obtaining the 

pose (positions and orientations) of cylindrical objects, as 

well as incorporating other sensing modalities and 

complementary perception methods to leverage the robotic 

manipulation in more complicated scenarios. For example, 

we will consider segmenting cylindrical objects by the 

presented ellipse detector while capturing edge information 

based on deep learning to get both positions and 

orientations, which allows to plan more advanced 

manipulation strategies for cylindrical objects with various 

configurations in complex and dynamic industrial 

environments.  

Additional video shows these applications in 

supplementary materials, or the video is available on 

https://www.youtube.com/watch?v=UvszHZs8R1k. 

APPENDIX 

Review of ellipse detection approaches 

Here, we present a brief overview of the existing 

approaches of ellipse detection in images. Almost all ellipse 

detection methods work with edge maps of the images since 

they are amenable to parametric analysis, geometric 

analysis, as well as algebraic analysis of the properties of 

ellipses. Modified versions of the basic Hough Transform 

(HT) for detecting shapes from planar sets of points were 

proposed for ellipse detection. The versions include 

Standard Hough Transform (SHT) [55], Randomized Hough 

Transform (RHT) [56], and Probabilistic Hough Transform 

(PHT) [57]. It has also been used in combination with other 

geometric or algebraic approaches, where HT is used for 

determination of s subset of parameters or is used with 

certain subset of the original image determined suitable for 

ellipse detection through geometric or algebraic properties. 

Examples include Cakir et al.[58], Chen et al.[59], and 

Prasad et al. [37]. The algebraic and statistical approaches 

such as those utilizing least squares fitting approaches [36], 

random sample consensus [49], etc. benefit by supplying 

edges selected specifically as likely belonging to ellipses. 

Notably, they are significantly more computationally 

efficient than HT based approaches.  

Thus, selection of arcs based on geometric properties is 

useful in such approaches too. Further, the robustness and 

accuracy of ellipse detection is better if the ellipse is 

represented with as large circumference of it as available. 

However, the available circumference of ellipse may be 

broken into small curves due to occlusion, overlap with 

other objects, and image noise. Thus, while identifying arcs 

belonging to an ellipse, it is also worthwhile to cluster such 

arcs and use collectively for obtaining the ellipse 

parameters. This has been the fundamental guiding principle 

behind the ellipse detection approaches developed over the 

last decade when successive improvement in accuracy of 

ellipse detection was observed. Unsurprisingly, these 

methods comprise the current state-of-the-art algorithms in 

ellipse detection from images. We summarize these methods 

briefly here. A geometric criterion is used to select 

candidate pairs of arc segments that belong to the same 
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ellipse by searching the elliptic arcs from edge contours in 

[60, 61]. Subsequently, these short arc segments are merged 

to fit an ellipse by a statistical regression method [62]. 

Similarly, in several ellipse detection methods [36, 37, 49, 

63, 64], short straight lines are detected to approximate arc 

segments and these arcs segments are accumulated and 

merged into ellipses. Subsequently, these arcs are grouped 

according to the convexity-concavity [31, 65, 66], and 

geometric constraints [51]. Bai et al. [47] and Jia et al. [42] 

include the property of elliptical concavity to group arcs 

when clustering candidate ellipses. Symmetry of arcs in an 

image is utilized in [67, 68]. The distance information is 

adopted to evaluates registration of a set of arcs [69, 70]. 

Finally, a number of methods proposed by [35, 49, 71, 72] 

have attempted to improve the detection accuracy with 

iterative approaches.  

 The computational cost of the methods above is typically 

smaller than that of HT based methods, and the accuracy of 

these methods is better than the methods that use only HT or 

algebraic methods. Nevertheless, they are still limiting for 

real-time robust ellipse detections as we describe below. The 

time taken by these methods is determined by the time spent 

on analysis of the geometric properties, identifying the 

clusters of arc, determining the parameters of ellipse for 

each cluster of arcs, and then filtering the detected ellipses 

based on saliency metrics (confidence of detection) or 

redundancy (similar ellipses detected by two different 

clusters). Unless computationally efficient techniques are 

used for each step and information is re-used across the 

steps, the overall computation time can be prohibitive for 

real application. This is even more prominent if the attempt 

is to detect ellipses with not only good precision but also 

good recall. Good recall requires considering as many 

clusters or as refined clusters as feasible and good precision 

requires as stringent clustering and filtering as possible, both 

imposing on the time spent on clustering arcs and filtering 

ellipses. Thus, methods that are fast compromise the 

detection performance measured through F-measure 

(harmonic mean of precision and recall) and methods that 

perform well are slow.  

 

The Arc Extraction Algorithm 

Algorithm I.    

  Arc Extraction by splitting a curve at sudden changes 

Input: 𝑇𝜃, curves 

Output: arcs that may consist of ellipses in a container 𝐶 

For 𝑖 = 0 to the size of curves do 

      Fit curve 𝑖 by line segments;  
      Calculate the angles 𝜃 formed by consecutive line segments 

      For 𝑗 = 0 to the size of line segments do 

             If (abs(𝜽𝑗+1-𝜽𝑗) > 𝑇𝜃) 

                   For 𝑚 = 0 to the size of the 𝑖th curve do  

                          If (𝑠𝑖𝑔𝑛(𝜽𝑗) ∙ 𝑠𝑖𝑔𝑛(𝜽𝑗+1) < 0)       

                              If (line segments [𝑗].x = =curve_𝑖[𝑚].x && 

                                   line segments [𝑗].y = =curve_𝑖[𝑚].y) 

                                      Reserve these points in the container 𝐵;  

                          Else 

                             If (line segments [𝑗 + 1].x = =curve_𝑖[𝑚].x 

                              &&line segments [𝑗 + 1].y = =curve_𝑖[𝑚].y) 

                                      Reserve these points in the container 𝐵;                 

       For 𝑘 = 0 to the size of 𝐵 do 

              For 𝑛 = 𝐵[𝑘] to 𝐵[𝑘 + 1] do 

                   Reserve curve [𝑖][ 𝑛] in the container 𝐶.                 
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