
 

 

 

Abstract—We propose a high efficient learning approach to 

estimating 6D (Degree of Freedom) pose of the textured or 

texture-less objects for grasping purposes in a cluttered 

environment where the objects might be partially occluded. 

The method comprises three main steps. Given a single RGB-D 

image, we first deploy appropriate features and the random 

forest to deduce the object class probability and cast votes for 

the 6D pose in Hough space by joint regression and 

classification framework, adopting reservoir sampling and 

summarizing the pose distribution by clustering. Next, we 

integrate the auto-context into cascaded Hough forests to 

improve the efficiency of learning.  Extensive experiments on 

various public datasets and robotic grasps indicate that our 

method presents some improvements over the state-of-art and 

reveals the capability for estimating poses in practical 

applications efficiently. 

I. INTRODUCTION AND RELATED WORK 

    As robotic systems are getting employed in unstructured 

environments, they are required to manipulate objects in 

highly cluttered scenes[3]. A typical scenario involves 

pick-and-place tasks, where a robot has to estimate the pose 

of an object in a cluttered environment, pick up the object, 

and move it to a designated position, as shown in Fig. 1. A 

large number of efforts are invested in tackling the pose 

estimation problem. Although the associated challenges 

have been partly handled in previous works, occlusions 

among multiple objects can make pose estimation very 

difficult from a single viewpoint, supporting several 

ambiguous pose hypotheses. Moreover, even with an 

appropriate image descriptor, few of the approaches can run 

at very high speed because of large collection of relevance 

vectors14.  

   In this work, we focus on a specific scenario where the 

input is a single RGB-D image. Our target is to design a fast 

algorithm to generate a high-quality shortlist of candidates 

for 6D (3D rotation and 3D translation) poses of everyday 

object space to a 3D coordinate in camera space even in the 

objects (both textured and texture-less) accurately, which  
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transforms a 3D coordinate in the target presence of 

occlusions. We employ Hough forest coupled with 

auto-context to estimate 6D pose reliably despite the 

possible occlusion in a cluttered environment by means of 

reservoir sampling and voting regression distribution. The 

proposed method benefits from this integration and achieves 

results that are superior, in terms of detection speed and 

accuracy, to the recent works.  

     Random forests [7, 8] have been applied in several 

computer vision applications [10, 11] because of their ability 

to deal with large training datasets and fast computation 

[13]. Recent works make use of random forests in mapping 

image features to vote in a generalized Hough space [4, 

13-15]. Hough voting with small variance is used for 

predicting object pose, where small variances indicate high 

detection accuracy [2, 10, 16]. However, the Hough voting 

step results in considerable computational effort. A random 

Forest trained for pose estimation will generate a large 

number of votes to be processed, limiting the approach’s 

application. Recently, several methods[18, 19] of human 

detection and estimating human joint pose are proposed to 

improve the voting efficiency. Several algorithms [20-22], 

which are directly related to auto-context, used contextual 

beliefs as a weak learner in the boosting algorithm. The 

auto-context algorithm integrates rich image appearance 

models together with the context information by learning a 

series of classifiers, introduced by [23]. It directly targets the 

posterior through iterative steps, resulting in a simpler and 

more efficient algorithm.   
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Fig. 1.  Pose estimation of an object in a cluttered environment. The 

result of pose estimation is visualized by the green bounding box.  
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II. METHODOLOGY 

A. Construction of Hough Forest 

    Decision trees in a Hough forest are constructed according 

to a standard random forest framework [7]. After building 

3D models of the eight objects to be grasped, we render 

training images using a virtual camera[24](see Fig. 2). A 

patch extracted with the size of 𝑉 from the training image 

has four channels (RGBD) quantized by a vector of size 𝑉 

× 𝑉×4. The data thus extracted is provided as input to Hough 

forest.  

1) Training 

   The appearance of the 𝑖th local patch 𝒫𝑖 where 𝒫𝑖  is a 3D 

patch (e.g. of  𝑉 × 𝑉 × 4) sampled from RGB-D image is 

composed of several components:  {𝒫𝑖 =
(ℐ𝑖, 𝑐𝑖 , 𝜃𝑖, 𝑠𝑖 , 𝑑𝑖)} .  ℐ𝑖   are extracted multiple features at a 

patch, ℐ𝑖 = (𝐼𝑖
0, 𝐼𝑖

1, 𝐼𝑖
2, ⋯ , 𝐼𝑖

𝐹)  is a feature channel at the 

patch 𝑖  and 𝐹 is the total number of feature channels. In our 

system, the feature channels, such as depth [18], colour in 

LAB space, the first and second order gradients in 𝑥 and 𝑦 

dimensions for the intensity space, LBP, and HoG, are used. 

𝑐𝑖   is the object class.   The vector 𝜃𝑖 =
{𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧, 𝜃𝑦𝑎𝑤 , 𝜃𝑝𝑖𝑡𝑐ℎ, 𝜃𝑟𝑜𝑙𝑙}  contains the pose 

parameters associated to each patch. The components 

𝜃𝑥, 𝜃𝑦, and 𝜃𝑧 represent position parameters from the point 

in the RGB-D camera falling on the centre of the training 

patch to the object position, while 𝜃𝑦𝑎𝑤 , 𝜃𝑝𝑖𝑡𝑐ℎ and 𝜃𝑟𝑜𝑙𝑙are 

the object rotation angles denoting the object orientation. 𝑠𝑖 

is a binary class label (0 for background sample and 1 for 

object patch) and 𝑑𝑖 is the offset from the centroid of the 

bounding box to the centre of the patch. 

   Each non-leaf node 𝐵 of a tree is assigned a binary test in 

relation to the patch appearance during training. The training 

sample is passed to the left or right node depending on the 

following binary test.  The binary test 𝑉𝐵,𝑅1,𝑅2,𝜏(ℐ) is defined 

as  

𝑉𝐵,𝑅1,𝑅2,𝜏(ℐ) = {
 0(𝑙𝑒𝑓𝑡),

1

𝑅1
∑ ℐ𝑖

𝑔
𝑖∈𝑅1

−
1

𝑅2
∑ ℐ𝑖

𝑔
𝑖∈𝑅2

< 𝜏 

1(𝑟𝑖𝑔ℎ𝑡),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,
(1) 

where ℐ𝑖
𝑔

 represents the feature channel, 𝑅1  and 𝑅2  denote 

two rectangles around the pixel 𝑖, and 𝜏 is a threshold.  The 

difference between the average values of two rectangular 

areas rather than single pixel differences is used in testing, 

which is less sensitive to noise. At each node during training, 

a pool of binary tests is generated with random values of 

𝑅1, 𝑅2, 𝑔.   

   Depending on the classification to determine the object 
class label, the ideal binary test is the one with the minimal 
entropy stored in a patch in all the tests at each node as 
follows,  

𝑈1(𝐴) = −|𝐴| ∙ ∑ 𝑃𝑐 𝑙𝑛(𝑃𝑐)                  (2) 

where |𝐴| is the number of patches in a set 𝐴 and 𝑃𝑐 is the 

proportion of patches with the object class label 𝑐 in a set 𝐴. 

    Traversing the binary tree costs much computational 

resource for training samples while training. To keep 

memory consumption reasonable, the training samples that 

arrive at the leaf nodes are summarised by the reservoir 

sampling [25] to obtain a fixed-size unbiased  training 

samples. The effect of the reservoir capacity on estimation 

accuracy of object pose is discussed later. The mean shift is 

applied to clustering training samples after the reservoir 

sampling. The detail algorithm is shown in Table I.    

According to the regression, we model the object 6D pose  𝜃 

at each node as realizations of a random variable with a 

multivariate Gaussian distribution[11], i.e., 𝑝(𝜃) =

𝒩(𝜃; 𝜃̃, Γ). 𝜃̃ is the mean of 6D pose 𝜃 and Γ represents the 

full covariance matrix for each mode.  

𝑈2(𝐴) = ln(|Γ(𝑃)|) − ∑ 𝜔𝑗 ln(|Γ𝑗(𝑃𝑖)|)𝑗∈{ℒ,ℛ} ,    (3) 

where ℒ  and ℛ  represent the left and the right, 

respectively; 𝑃𝑖   is the set of patches reaching node 𝑗 and 𝑃 

is the set of patches at the parent node of 𝑗; 𝜔𝑗 is the ratio 

between the number of patches in the node 𝑗  and in its 

parent node, i.e., 𝜔𝑗 =
𝑃𝑖

𝑃
.  Maximizing Eq.(3) encourages 

minimizing the determinant of the covariance matrix Γ, thus 

decreasing the uncertainty for casting the votes by each 

patch cluster. The covariance matrix Γ = diag(Γ𝑙 , Γ𝑎)  is 

block-diagonal,  Γ𝑙  and Γ𝑎  denote the covariance matrix 

among the location vectors and among the rotation angle 

vectors, respectively. Thus, we can obtain the following 

equation, 

𝑈2(𝐴) = ln(|Γ𝑙| + |Γ𝑎|) − ∑ 𝜔𝑗 ln(|Γ𝑗
𝑙| + |Γ𝑗

𝑎|)𝑗∈{ℒ,ℛ} . (4)  

2) Testing  

    Given a novel RGB-D image, we first extract sample 

patches from the image which have been pre-processed 

using mean normalization for speeding up the processing. 

For each node, the stored binary test can determine the patch 

sample to the left or right child until a leaf. 

   Note that the object class is first determined independently 

in Hough space where we accumulate the votes of the leaf 

nodes. The votes are weighted according to the probability 

of the associated object class stored in the leaf.  For the 

trained trees in a random forest ℱ, a patch 𝒫𝑖  arrived in the 

 

Fig.  2.  3D models of the eight textured and texture-less objects. 
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leaf nodes, the probability 𝑝(𝑐|ℱ, 𝒫𝑖) of object class 𝑐  is 

calculated by averaging the probabilities of object class 

labels at the reached leaf nodes 𝐿𝑛(𝒫𝑖) that have been stored 

during the period of training as follows, 

𝑝(𝑐|ℱ, 𝒫𝑖) =
1

𝑁
∑ 𝑝(𝑐|𝐿𝑛(𝒫𝑖))𝑁

𝑛=1 ,              (5) 

                    𝑝(𝑐|𝐿𝑛(𝒫𝑖)) =
1

𝑚
∑ 𝑃𝑐

𝐿(𝜊)(𝑛)𝑚
𝜊=1 ,                 (6) 

where 𝑝(𝑐|𝐿𝑛(𝒫𝑖)) is defined as the probability of object 

class 𝑐 in the reached leaf nodes of the trained tree  𝑛 in ℱ 

including 𝑁  trees.  𝑃𝑐
𝐿(𝜊)(𝑛)  denotes the proportion of 

patches belonging to an object class label 𝑐 arriving at the 

leaf 𝜊 of the tree 𝑛 and 𝑚 represents the total number of leaf 

nodes recording the patch 𝒫𝑖  in the tree 𝑛.  

    At each leaf node 𝑙, a sample patch provides an estimate 

for the pose in terms of the stored distribution 𝑝(𝜃|𝑙) =

𝒩(𝜃; 𝜃̃, Γ) ,i.e., a continuous regression output. The 

variables are summed to produce a Gaussian; its mean is the 

ultimate estimate of the output parameters and its covariance 

evaluates the estimate’s uncertainty based on mean shift 

interactions.  

   To speed up, we incorporate a clustering pre-processing 

step to reduce votes per node. The modes of votes are found 

by mean shift and sizes of distributions are employed as 

weights while accumulating votes. We represent the 

distribution using a set of the cluster centres of the 𝐾 largest 

modes found by mean shift. We assign a confidence weight 

to each chosen cluster according to the size of its cluster, 

whereby the set of absolute votes cast by all the training 

samples for the object pose is aggregated using mean shift. 

Our experiments later highlight the importance of this. We 

first locate the object position and then, to estimate 

orientation parameters. Specifically, the mean of all votes 

returned by the forest is used for the initialization of the 

mean-shift, which is regarded as the true object position, 

where most of the votes usually cluster. Such cluster centres 

are voted in Hough space. The next step is to extract maxima 

in the smoothed Hough space using non-maximum 

suppression (NMS). The voting procedure is as shown in 

Fig. 3.  

B. Stacked Hough Forest coupled by Auto-context 

   The auto-context is integrated into the Hough forest 

algorithm while learning. We train a stack of Hough forests 
{ℱ1 , … , ℱ𝛾 , … , ℱ𝑎}   in the cascaded way, where 𝑎 

represents the total number of stack forests. The whole 

output of the forest is taken as input to the next forest such as 

object class label probability 𝑝(𝑐|ℱ𝛾 , 𝒫𝑖) and estimated 6D 

pose prediction 𝑝(𝜃|ℱ𝛾 , 𝒫𝑖) in the 𝛾th Hough forest.   

    Outliers have a critical influence on accumulators in 

Hough space, leading in inaccurate results.  To relieve this 

issue, we also have to smooth the predictions from the forest 

ℱ𝛾 for the outputs of neighbouring pixels before passing to 

the next forest ℱ𝛾+1. It is well-known that L1-loss function 

is more robust and is generally not affected by outliers. 

However, the instability property of L1-loss means that, for a 

small change of input data, the accumulators may fluctuate 

significantly. In contrast, L2-loss is stable. Therefore, we 

combine L1-loss and L2-loss functions together by means of 

linear functions to discard undesired outliers and improve 

clustering stability during iterations as much as possible. A 

median filter is used in a local neighbourhood of each pixel.  
    Under L1-loss and L2-loss, the median-smoothed object 
probabilities 𝑝(𝑐|ℱ𝛾 , 𝒫𝑖) are defined as 

ℎ𝑐
𝛾(𝑐|𝒫𝑖 , 𝐿1) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ‖𝑝(𝑐|ℱ𝛾 , 𝒫𝑖) − 𝑝𝑖‖1𝑖∈𝒩𝑖

,   (7) 

ℎ𝑐
𝛾(𝑐|𝒫𝑖 , 𝐿2) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ‖𝑝(𝑐|ℱ𝛾 , 𝒫𝑖) − 𝑝𝑖‖2𝑖∈𝒩𝑖

,   (8) 

where we denote by 𝒩𝑖  a small neighbourhood around the 

centre pixel 𝑖 in 𝒫𝑖. 𝑝𝑖  is the median object probability for 

each local neighborhood.   

    Similarly, we also use the mode above to smooth the 6D 

pose prediction 𝑝(𝜃|ℱ𝛾 , 𝒫𝑖),which is crucial for predicting 

object 6D pose. The median filter is not only robust to 

outliers but also stable for clustering based on L1-loss and 

L2-loss. Since the median filter is just used in smoothing 

data with one dimensionality. the optimum under L1-loss 

has to be formulated in Euclidean space. Thus, the 

regularized object 6D pose output is defined as follows, 

ℎ𝜃
𝛾(𝜃|𝒫𝑖 , 𝐿1) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ ‖𝜇𝑖,𝑇 − 𝜃‖

2𝑇∈ℱ𝛾𝑖∈𝒩𝑖
,        (9) 

ℎ𝜃
𝛾(𝜃|𝒫𝑖 , 𝐿2) = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ ∑ ‖(𝜇𝑖,𝑇 − 𝜃)

2
‖

2
𝑇∈ℱ𝛾𝑖∈𝒩𝑖

, (10) 

where 𝜇𝑖,𝑇  represents the mean value with the highest 

mixture weight of the pose distribution 𝑝(𝜃|ℱ𝛾 , 𝑐, 𝒫𝑖) for 

the object class 𝑐 in the tree 𝑇 from the forest ℱ𝛾. To discard 

undesired outliers and improve clustering stability during 

TABLE I.   The detail algorithm of regression models 

Algorithm: Regression models to summarize the distributions of 

training samples at leaf nodes 

1: // Collect training samples arriving at leaf nodes 

2:  For all training samples i do 

3:         Calculate the binary test  
4:         Determine training sample to the left or right 

5:         Descend tree to reach leaf node l 
6:         Store training samples with reservoir sampling 

7: // Cluster 
8:  For all leaf nodes do 

9:       For all the training samples do 

10:              Cluster the training samples using mean shift 
11:             Store the mean of elements in pose vector 

 

Fig. 3.  Detection for object class and pose by casting votes. A,B,C,D 
represent the voting spaces for object class and 6D pose, respectively. 
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iterations as much as possible, we combine L1-loss and 

L2-loss functions together by means of linear functions. The 

final median-smoothed probability is provided as 

ℎ𝑐
𝛾(𝑐|𝒫𝑖) = 𝜆1ℎ𝑐

𝛾(𝑐|𝒫𝑖 , 𝐿1) + 𝜆2ℎ𝑐
𝛾(𝑐|𝒫𝑖 , 𝐿2),      (11) 

ℎ𝜃
𝛾(𝜃|𝒫𝑖) = 𝜆1ℎ𝜃

𝛾(𝜃|𝒫𝑖 , 𝐿1) + 𝜆2ℎ𝜃
𝛾(𝜃|𝒫𝑖 , 𝐿2),     (12) 

where we denote by 𝜆1  and 𝜆2  the weights of 

ℎ𝑐
𝛾(𝑐|𝒫𝑖 , 𝐿1) ,  ℎ𝜃

𝛾(𝜃|𝒫𝑖 , 𝐿1)  and ℎ𝑐
𝛾(𝑐|𝒫𝑖 , 𝐿2) ,  ℎ𝜃

𝛾(𝜃|𝒫𝑖 , 𝐿2) 

,respectively. We set 𝜆1 = 𝜆2 = 0.5. This output for this 

feature 𝑓𝑐(𝑥) = ℎ𝑐
𝛾(𝑐|𝒫𝑖 , 𝑢 + 𝑜) on the object class label, is 

used in forest ℱ𝛾+1 . The location 𝑢 at the pixel 𝑖 and the 

relative offset 𝑜,the smooth object class 𝑐  are included the 

parameter 𝑥 . Correspondingly, we define the feature 

𝑓𝜃(𝑥) = ℎ𝜃
𝛾(𝜃|𝒫𝑖 , 𝑢 + 𝑜) on the smooth object pose output. 

The parameter 𝑥 consists of the object class 𝑐, the pose 𝜃, 

the relative offset 𝑜 and the location 𝑢 at the pixel 𝑖. The set 

of passed features can be enhanced by updating 𝑓𝑐(𝑥) and 

𝑓𝜃(𝑥) at the current forest.  

C. Refining the Final Pose 

    Through the verifications above, an object has multiple 
pose candidates because of a large number of votes. Here, 
we use the method in [4] to refine the object pose.  

III. EXPERIMENTS AND DISCUSSIONS 

    Here we explain three general evaluation metrics. For 
Metric 1 defined in [1], the score that evaluates the 
difference between the ground truth pose and the estimated 
pose is used in determining whether the estimated pose is 
correct or not. If the translational error and angular error is 
less than 5cm and 5° respectively, the estimated pose is 
considered correct, which is named by Metric 2[26]. We also 
use F-measure as the criterion, which is the harmonic mean 
of precision and recall. 

A. Framework Parameters 

    Parameter optimization is performed on a validation 

dataset created by a virtual camera. For each object class, we 

train Hough Forest with varying parameters. 
    The size 𝑉 of the patch has an important effect on the 
detection accuracy because a large patch tends to generate a 
holistic matching, which is sensitive to clutters and 
occlusions. However, if the size is very small, it may be 
regarded as noise. Note that the decrease of F-measure 
occurs for patches with size equal to 20 and higher because 
of clutters or occlusions (see Fig. 5(A)). Evidently, a forest 
with more than four trees imposes the computational burden. 
In this work, we set the number of trees to 4 and the size 𝑉 of 
the patch is 20.  
    Figure 5(B) shows that F-measure rapidly improves as the 
tree depth increases, though it starts to level off around depth 
24.  For 50k images, the over fitting occurs at about depth 
20, but it is avoided using the enlarged 100k training images. 
The deeper tree obtains a large extra memory penalty. Here 
the maximum depth of trees is set 26 and the number of 

training images is 100k.  
   The effect of the number of forests on the detection 
performance is shown in Fig. 5(C), where it is obvious that 
the detection accuracy increases gently when the number of 
Hough forests is larger than 3 while the execution time 
consistently increases. Thus, the best number of random 
forest is set as 3.  
   With increasing the number of stride, F-measure decreases 
in Fig. 5(D). Thus, we set the stride 4.   
   From Fig. 5(E), the size of the reservoir has little effect on 
the detection accuracy. From 200 to 300, a small increase 
occurs in F-measure. In surprise, increasing the reservoir 
capacity to 600 leads to a small drop. To quantify the role of 
the number 𝐾 of cluster centers, we test our system varying 
the number of cluster centers. Increasing the number of 
cluster centers causes a small rise decreases from 0.889 to 
0.902, as shown in Fig. 5(F). We set this number of cluster 
centers 100. 
    Figure 5(G) shows the effect with and without reservoir 
sampling and the distributions to represent votes by 
clustering on the execution time. It reveals that the use of 
these two methods can improve the detection efficiency 
significantly. 

B. Performance Evaluation by Self-comparison 

As shown in Fig. 5(H), the integration of the auto context 

into Hough forest evidently improves the performance of 6D 

pose estimation. Also, the combination of L1-loss and 

L2-loss boosts the detection performance. Without 

auto-context, the presented estimator fails to estimate the 

correct poses reliably. For the metric in [1], our approach is 

very close to 100% . In contrast, since the metric in [26] is 

more rigorous than the metric in [1] for rotation evaluation, 

the presented method still achieves the accuracy of 83.6%. 

Using the combination of L1-loss and  L2-loss, compared to 

L1-loss only or just L2-loss only, results in improvements of 

8.3% or 10.9% for the metric[1] and 4.1% or 6.5% for the 

metric[26], respectively.  

C. Performance Evaluation of Two Public Datasets 

   To illustrate that our approach can address the pose 
estimation of multiple objects in an image, we evaluate our 
method on the dataset presented by Tejani et al.[2]. The 
comparison results of the several methods regarding 
F-measure are presented in Table II. The challenge of 
estimating poses of “Camera” and “Milk” instances stems 
from the main factor that these objects are texture-less and of 
uniform colour in cluttered environments. Our approach is 
superior to the state of arts on the Camera and Milk box that 
has the similar appearance with the clutter and is partially 
occluded. This also shows the robustness of our method to 
the cluttered scenarios. We obtain  an average F-measure of 
0.907 in the dataset of Tejani, which excesses 2.2% than the 
current state-of-the-art method[6]. Several examples are 
shown in Fig. 4. 
    The occlusion dataset created in [5] is an extension of [1], 
which includes instances of multiple objects occurring with 
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serious occlusions. In this case, it is difficult to get the pose 
of an object due to the partial occlusions. However, our 
method still can achieve an average rate of correctly 
estimated poses of 81.3% using the criteria presented in [1]. 
The qualitative examples are illustrated in Fig. 4. Here, our 
method provides excellent accuracy for estimating the pose 
of “Ape” that has a small size, which performs best among 
these methods. In comparison with the newest work 
implemented in [17], our approaches presents improvements 
of 4.6%(Table III). 

D. Robotic Grasp Experiments 

   The setup is shown in Fig. 1. All the experiments are 
performed on a PC with 15.6 GiB Memory, GTX 645 and an 
Intel Core i7 processor.  In the first set of grasp experiments, 
our goal is to grasp 6 objects that are placed at 5 different 
poses (i.e., random position and orientation) using a robot. A 
successful grasp is defined that the robotic gripper lifts an 
object 15cm above the supporting plane and keeps it around 
5 seconds. We first place an object at a random pose on a 
table in front of the robot. Depending on the estimated pose, 
the robot plans a suitable path to be close to the object in a 
“pre-grasp” position, which is defined as 10 cm away from 
the actual grasping configuration along the horizontal 
direction. Then the gripper moves to the actual grasp 
position, grasps the object, and lifts it to a position 15 cm 
higher. Figure 6(the first row) shows the grasp steps. Several 
grasp cases are shown in Fig. 6(the second row). Moreover, 
the grasp success rates for each object are also summarized 
in Table IV. The robot successfully grasped 28 objects out of 
30 tries, realizing an overall success rate of 93%. Successful 
grasps indicate our approach to estimating 6D pose can be 
used in a real world. We find that our algorithm of pose 
estimation is quite robust to the objects with multiple poses 
in real scenarios. In general, two failures were due to 
incomplete capture of depth information, which resulted in 
the fingertip colliding with the grasped object. The average 
estimation time of the proposed method can achieve 0.92s 
per RGB-D image. 

IV. CONCLUSION 

    We proposed a new approach of estimating the 6D poses 
of objects in crowed scenes by means of Hough Forests 
coupled with auto-context from raw RGB-D data. Our 
method consistently outperforms state-of-the-art techniques 
on standard benchmark datasets and significantly improves 
robotic capabilities in targeted object manipulation. As a 
future work, we want to investigate how to optimize this 
algorithm so that a robot can grasp an object in real time. 
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Fig. 5.  Parameter determination and self-comparison. Wt(Without auto-context),RS(Just reservoir sampling),DC(the distribution by clustering). Wt 

AC(Without auto-context),L1(L1-loss),L2(L2-loss),(Metric 1) and (Metric 2). 

 
Fig. 6.  The steps of robot grasping an object (the first row) and robot grasping several different textured and texture-less objects in cluttered environments. 

The target is enclosed by a yellow frame. The object pose is visualized by the green bound box. 
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